ngholmes@cornell.edu cperl.lassp.cornell.edu @ng_Holmes

USING PHYSICS LABS TO TEACH EXPERIMENTATION AND CRITICAL THINKING

NATASHA G. HOLMES CORNELL PHYSICS EDUCATION RESEARCH LAB LABORATORY OF ATOMIC & SOLID STATE PHYSICS PHYSICS DEPARTMENT, CORNELL UNIVERSITY

LEARNING GOALS

By the end of this session, you should be able to:

- List learning outcomes for lab instruction about experimentation,
- Describe fundamental principles for teaching experimentation skills, and
- Identify instructional decisions to implement those fundamental principles.

All our materials are on PhysPort.org/curricula/thinkingcritically

COMPLETE THIS SENTENCE:

MYINTRO PHYSICS LABS WERE...

Big picture (What and why)

Sample activity (How)

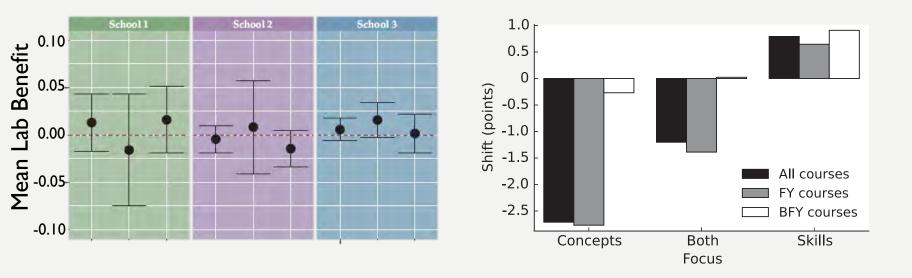
Big picture (How)

Choose your own adventure:

• What we do

- Design a lab
- TA training
- Grading...

Case study (How)


HOW DO WE DO EXPERIMENTS IN PHYSICS?

ANSWER THE QUESTION WITH YOUR NEIGHBOR

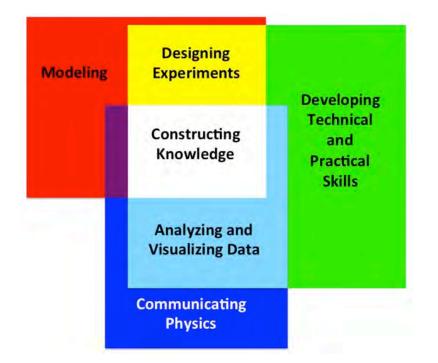
TRADITIONAL 'VERIFICATION' LABS

Highly structured

Confirmatory

No measurable added value to learning content

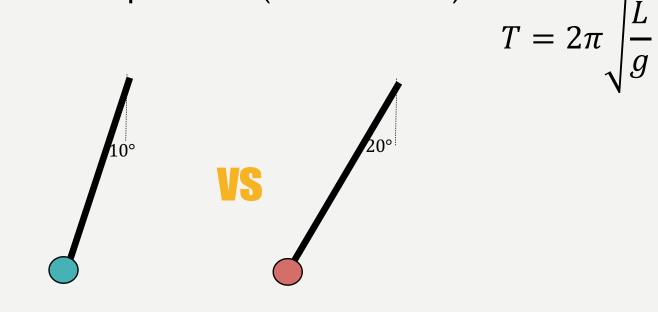
Deteriorate student attitudes towards experimental physics


THE THING ABOUT VERIFICATION LABS

Holmes & Wieman (2018); Holmes, Olsen, Thomas & Wieman (2017) Wilcox & Lewandowski (2016, 2017) 15. To better investigate the model, what should the Group 2 students do next?

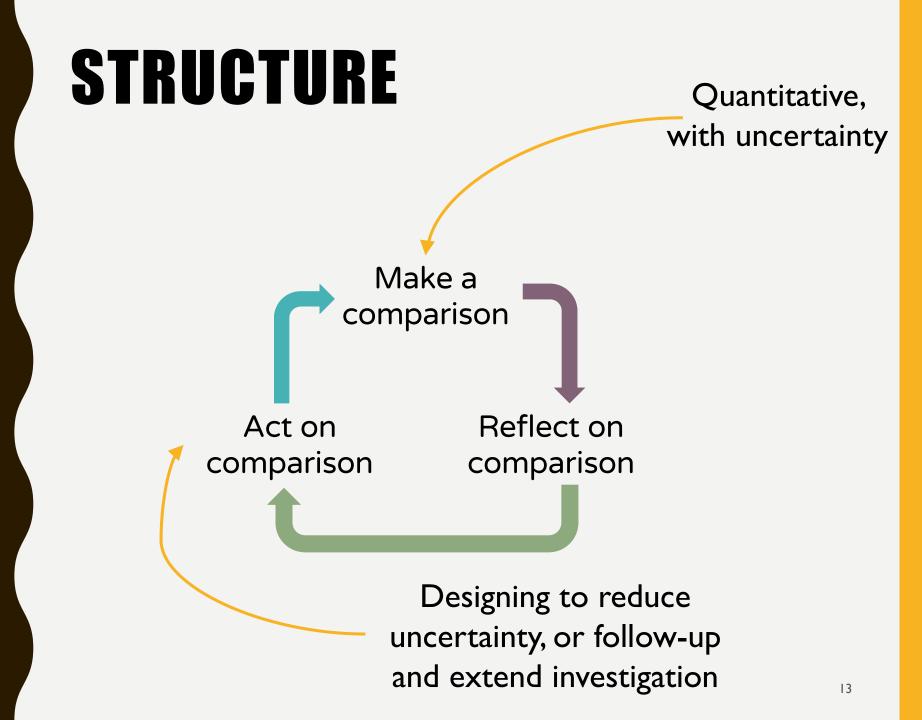
THE EXTREME CASE

AAPT Recommendations for the Undergraduate PHYSICS EDUCATION AAPT Recommendations for the Undergraduate

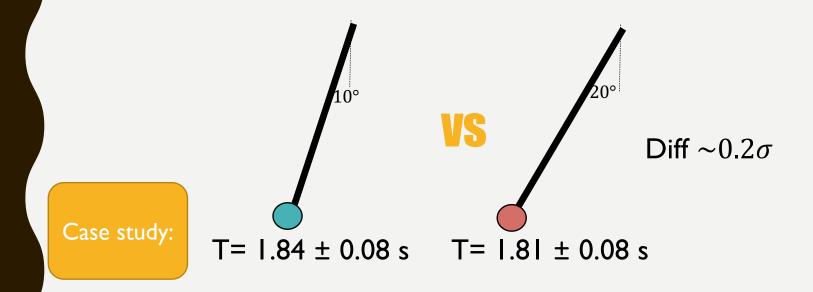

Report prepared by a Subcommittee of the AAPT Committee on Laboratories Endorsed by the AAPT Executive Board November 10, 2014

WHAT IS Critical Thinking?

The ways in which you make decisions about what to trust and what to do.


ACTIVITY: MODEL TESTING

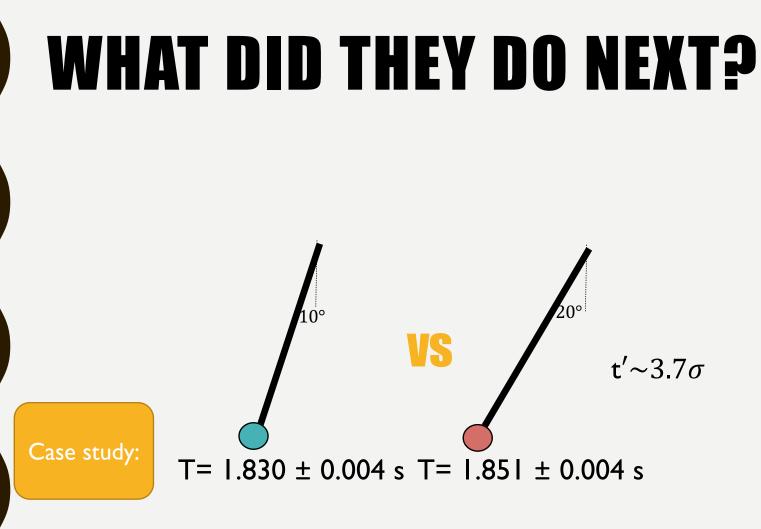
Does the period of a pendulum differ when released from different amplitudes $(10^{\circ} \text{ and } 20^{\circ})$?


Handout:

- Make a plan, discuss plan with another group, carry out plan.
- Find ways to improve plan, discuss improvements with another group, carry improved plan out.

LAB QUESTION:

Does the period of a pendulum differ when released from different amplitudes (10° and 20°)?

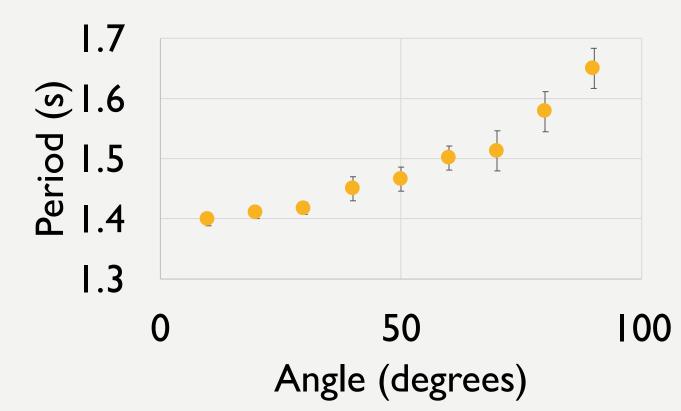

- Measure time for single period, T
- Repeat 10 times, find average, standard error

Holmes & Bonn (2015) The Physics Teacher

What might a difference of 0.2σ mean?

$$t' = \frac{T_{10^{\circ}} - T_{20^{\circ}}}{Uncertainty}$$

Small difference means values are close AND/OR uncertainty is large



- Measure time, t, for 20 periods
- Divide by 20 to get period, repeat average, standard error...

Holmes & Bonn (2015) The Physics Teacher

the opposite of the expected choppened: truppor > 3 => concentred values are different Conclusion . The period of a pendulum does depend on the angle ownth the votical in the initial position. The algebraically derived primula for $T \approx 2\pi \sqrt{\frac{2}{g}}$ of a pendulum is only balid for gConsidering othe results of Unis experiment, 20° is obviously not 'small' cenough since othe angle thas an effect on the porod t and should be somehim represented in the formula. ilf you can imake a preise cenoup inecurrent, you can show that the Alcoritical derivation of the equation of motion for a pendulum is just a good approximation and reality is slightly more complicated.

PERIOD AS A FUNCTION OF ANGLE

"The pendulum experiment we did at the beginning of the year, I think that really made a mark on me. Because I went in there expecting it [the period at 10 and 20 degrees] to be the same, because that's what I was taught. And then, when you finally figure out that, 'oh, it's supposed to be different,' and then I was like, 'Oh! I probably shouldn't be doing experiments with bias going in.'"

Big picture (What and why)

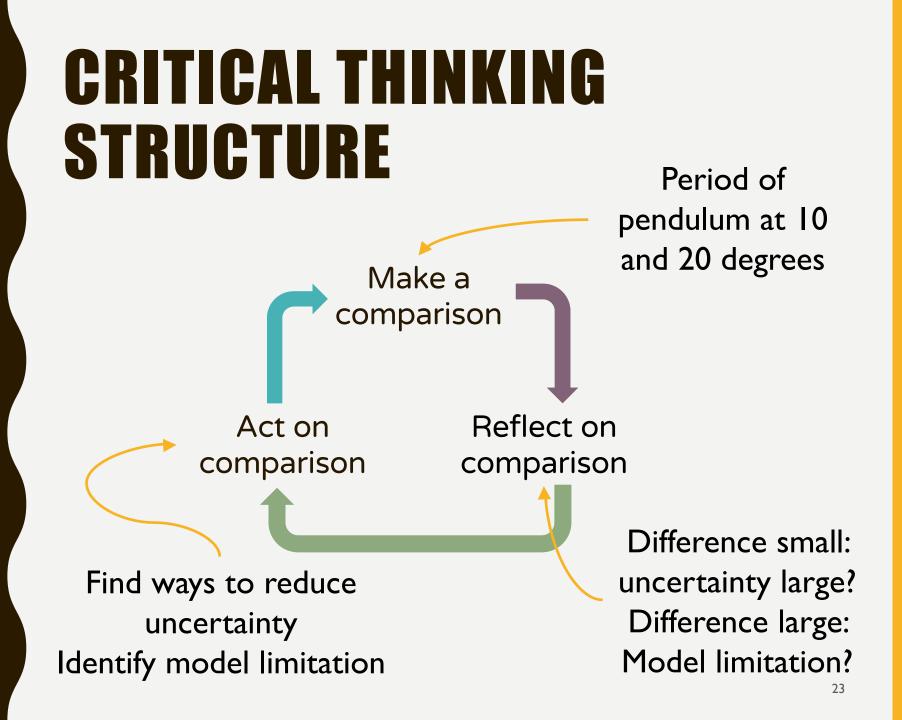
Hands-on example (How)

Case

study

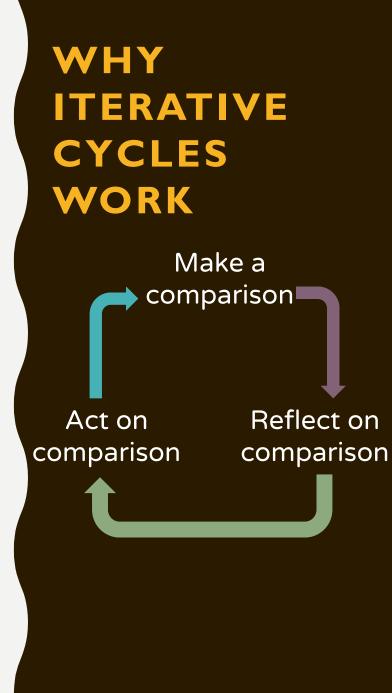
(How)

Big picture (How)


Choose your own adventure:

What we do

• Design a lab


- TA training
- Grading...

22

- Comparisons help students make sense of results
- Agency and freedom to make decisions (and mistakes)
- Feedback and support to learn from decisions
- Opportunities and time to revise and improve
- Situations where:
 - Physics isn't 'perfect' (deal with disagreements)
 - Students don't know the answer
 - Instructors don't know the answer

Gick & Holyoak (1980, 1983); Bransford et al. (1989); Ericsson et al. (1993); Bransford & Schwartz (1999); Kapur (2008)... ²⁴

A NOTE ON STRUCTURE

Traditional

Goal defined

Specific equipment provided

All experimental decisions made

Full open-ended

No goal defined

Room full of equipment provided

No experimental decisions made

CORNELL INTRO LAB LEARNING GOALS:

By the end of the three-course intro lab sequence, students should be able to:

- I. Collect data and revise the experimental procedure iteratively, reflectively, and responsively,
- 2. Evaluate the process and outcomes of an experiment quantitatively and qualitatively,
- 3. Extend the scope of an investigation whether or not results come out as expected,
- 4. Communicate the process and outcomes of an experiment, and
- 5. Conduct an experiment collaboratively and ethically.

Visit cperl.lassp.cornell.edu for the full list

LAB ACTIVITIES

Mechanics:

E&M:

- I. Model Testing (Pendulum) I. Model Building
- 2. Model Testing & Ethics (Objects in flight)
- 3. Model Testing & Extending (Hooke's law)
- 4. Project Lab

- (Electrostatics)
- 2. Model Building & Testing 2. Diffraction (Circuits)
- 3. Model Building & Design (Faraday's Law)
- 4. Model Building & Predicting (Magnetic Fields)
- 5. What does this thing do (LEDs)

Waves & Optics:

- I. What is this data? (analysis review)
- 3. Project Lab (5-6 weeks)

GRADING

Three components:

- I. In-lab check-in (group)
- 2. Lab notes (group)
- 3. Post-lab exercise (individual)

Students also complete in-lab worksheets (individual, but ungraded). These are mostly to keep students on task.

HOW TO ASSES THE LABS (NOT THE STUDENTS)

- PLIC: closed-response assessment of students' critical thinking skills in context of intro physics labs
 - cperl.lassp.cornell.edu/PLIC
- E-CLASS: survey of students' attitudes and beliefs about experimental physics
- CDPA: multiple choice test of student understanding of data analysis
- Physics Measurement Questionnaire: open-response assessment of student understanding of uncertainty and measurement

Use Socratic questioning – don't give students an "answer"

Provide some feedback and guidance – offer multiple suggestions that students can choose from

Formalize the "check-ins" – encourage students to ask each other for help with technical stuff

Buy-in is hard – like all new forms of teaching, but this one shifts the goal as well as the method

TA TRAINING

THE BIG THINGS:

 Change the goals to focus on process rather than product

• Spread labs over multiple sessions

• Give students some agency

THE BIG THINGS:

- Change the goals to focus on process rather than product
 - Narrow and focus goals per lab
 - Grade for their decision-making, not their result
- Spread labs over multiple sessions
 - -Give them time to go deep in a few experiments
- Give students some agency
 - Remove some of the structure and let students make decisions in a constrained space
 - Use experiments where students don't know the "answer" so they use experiment for discovery, not confirmation
 - -Use experiments where the result is surprising

LEARNING GOALS:

By the end of this session, you should be able to:

- List learning outcomes for lab instruction about experimentation,
- Describe fundamental principles for teaching experimentation skills, and
- Identify instructional decisions to implement those fundamental principles.

All our materials are on PhysPort.org/curricula/thinkingcritically

RESOURCES

Our webpage: cperl.lassp.cornell.edu

PhysPort: PhysPort.org/curricula/thinkingcritically

Contact me: ngholmes@cornell.edu

Other materials also at: sqilabs.phas.ubc.ca

Citations:

- Holmes, N. G., & Wieman, C. E. (2018). Introductory physics labs: We can do better. Physics Today, 71(1), 38–45. <u>https://doi.org/10.1063/PT.3.3816</u>
- Holmes, N. G., & Smith, E. M. (2018). Operationalizing the AAPT Learning Goals for the Lab (accepted to The Physics Teacher)
- Holmes, N. G., Olsen, J., Thomas, J. L., & Wieman, C. E. (2017). Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content. Physical Review Physics Education Research, 13(1), 010129. <u>https://doi.org/10.1103/PhysRevPhysEducRes.13.010129</u>
- Holmes, N. G., & Bonn, D. A. (2015). Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab. The Physics Teacher, 53(6), 352–355. <u>https://doi.org/10.1119/1.4928350</u>
- Holmes, N. G., Wieman, C. E., & Bonn, D. A. (2015). Teaching critical thinking. PNAS, 112(36), 11199–11204. <u>https://doi.org/10.1073/pnas.1505329112</u>

Thank you!!