Using Think-Pair-Share (TPS) to Promote Quantitative Problem Solving

Colin S. Wallace

Dept. of Physics and Astronomy University of North Carolina at Chapel Hill cswphys@email.unc.edu

Learning Outcomes

Participants will be able to:

- Identify fundamental problem solving issues to target with TPS questions
- Describe how TPS question sequences can be used to promote student problem solving abilities
- Describe how TPS problem solving techniques can be implemented in the lecture portion of the course

A plastic rod with a uniformly distributed charge $-Q$ is bent into a circular arc of radius r that subtends an angle of $\pi / 3$ radians. We place coordinate axes such that the axis of symmetry of the rod lies along the x-axis and the origin is the center of curvature for the rod. What is the electric field (magnitude and direction) at the origin?

Hint: Imagine that the arc is made up of many infinitesimally small point charges $d q$. Each $d q$ creates a differential electric field of magnitude $d E=k d q / r^{2}$.

Sum up all the $d E s$ from all the dqs to get the magnitude of the overall electric field.

Integration is a way to add many infinitely small elements.

A plastic rod with a uniformly distributed charge $-Q$ is bent into a circular arc of radius r that subtends an angle of $\pi / 3$ radians. We place coordinate axes such that the axis of symmetry of the rod lies along the x-axis and the origin is the center of curvature for the rod. What is the electric field (magnitude and direction) at the origin?

What is true about the electric fields produced by the two dq elements shown in grey on the left?
A) Their x-components cancel out and their y components add together.
B) Their x-components add together and their y-components cancel out.
C) Both their x - and y-components add together.
D) Both their x - and y-components cancel out.

Since the y-components of the electric field cancel out, we only have to add the x components.

A plastic rod with a uniformly distributed charge $-Q$ is bent into a circular arc of radius r that subtends an angle of $\pi / 3$ radians. We place coordinate axes such that the axis of symmetry of the rod lies along the x-axis and the origin is the center of curvature for the rod. What is the electric field (magnitude and direction) at the origin?

What is the magnitude of the x component of $d E$ due to the $d q$ element shown in grey?

A) $k \frac{d q}{r^{2} \sin (\theta)}$
B) $k \frac{d q}{r^{2}} \sin (\theta)$
C) $k \frac{d q}{r^{2} \cos (\theta)}$
D) $k \frac{d q}{r^{2}} \cos (\theta)$

A plastic rod with a uniformly distributed charge $-Q$ is bent into a circular arc of radius r that subtends an angle of $\pi / 3$ radians. We place coordinate axes such that the axis of symmetry of the rod lies along the x-axis and the origin is the center of curvature for the rod. What is the electric field (magnitude and direction) at the origin?

A plastic rod with a uniformly distributed charge $-Q$ is bent into a circular arc of radius r that subtends an angle of $\pi / 3$ radians. We place coordinate axes such that the axis of symmetry of the rod lies along the x-axis and the origin is the center of curvature for the rod. What is the electric field (magnitude and direction) at the origin?

We need to integrate over all angles (θ), but $d E_{x}$ is in terms of $d q$, not $d \theta$.

Solution: Relate $d q$ to arc length $d s$ using linear charge density $\boldsymbol{\lambda}$

$$
d q=\lambda d s
$$

How is the differential arc length $d s$ related to the differential angle $\boldsymbol{d \theta}$?
A) $d s=r d \theta$
B) $d s=r^{2} d \theta$
C) $d s=d \theta / r$
D) $d s=d \theta / r^{2}$

A plastic rod with a uniformly distributed charge $-Q$ is bent into a circular arc of radius r that subtends an angle of $\pi / 3$ radians. We place coordinate axes such that the axis of symmetry of the rod lies along the x-axis and the origin is the center of curvature for the rod. What is the electric field (magnitude and direction) at the origin?

Find the magnitude of the electric field at the origin in terms of λ.

$$
E=\int_{-\pi / 6}^{\pi / 6} k \frac{\lambda}{r^{2}} \cos (\theta) r d \theta=\frac{k \lambda}{r}
$$

What is λ ?
A) $\frac{Q}{r(\pi / 6)}$
c) $\frac{Q(\pi / 6)}{r}$
B) $\frac{Q}{r(\pi / 3)}$
D) $\frac{Q(\pi / 3)}{r}$

A plastic rod with a uniformly distributed charge $-Q$ is bent into a circular arc of radius r that subtends an angle of $\pi / 3$ radians. We place coordinate axes such that the axis of symmetry of the rod lies along the x-axis and the origin is the center of curvature for the rod. What is the electric field (magnitude and direction) at the origin?

Magnitude of the electric field at the origin:

$$
E=\frac{3 k Q}{\pi r^{2}}
$$

What is the direction of the electric field at the origin?
A) $+\hat{i}$
B) $-\hat{i}$
C) $+\hat{j}$

Electric field at the origin: $E=\frac{3 k Q}{\pi r^{2}} \hat{i}$

Idealized Implementation

- Give a tightly-focused mini-lecture and then present the quantitative problem to your students.
- Give students 2-5 minutes to work on the problem before asking the first TPS question.
- Students need time to interpret the question and realize they are stuck.
- Circulate around the room while students are working and engaged in discussions with their neighbors.
- Listen to what students are saying to each other.
- Students are more likely to ask you questions if you're nearby.
- Give students time to finish the problem after the last TPS question and debrief interactively.

Using Voting Questions

- Choose a quantitative problem that requires students to use multiple pieces of physics and astronomy knowledge.
- Turn specific student difficulties into TPS questions.
- Answer choices are mathematical expressions/quantitative relationships.
- Wrong answers ("distractors") represent real errors students frequently make.

Where Will Students Struggle?

- Students will likely struggle when they have to do more than plugging in a number, performing an algebraic manipulation, or executing a well known algorithm.
- ACER Framework for Problem Solving (Caballero et al. 2015):
- Activation of mathematical tool
- Construction of mathematical model
- Execution of tho math
"...the majority of execution errors observed in this study were
- Reflection made by students who had already made one or more significant mistakes in the activation or construction components of the their solution." (Wilcox and Corsiglia 2019)

Time

Week	Day	Date Lecture Topic	Studio
1	Tue	20-Aug	First day of classes - No studio
	Wed	21-Aug Lecture 1 - Introduction	Studio 1 - Common Cents
	Thurs	22-Aug	Studio 1-Common Cents
2	Mon	26-Aug Lecture 2 - Scaling 1	Studio 2-Scaling 1
	Tues	27-Aug	Studio 2-Scaling 1
	Wed	28-Aug Lecture 3 - Scaling 2	Studio 3-Scaling 2
	Thurs	29-Aug	Studio 3 - Scaling 2
3	Mon	2-Sep Holiday - Labor Day	No studios held today
	Tues	3-Sep	No studios held today
	Wed	4-Sep Lecture 4 - Kinematics 1	Studio 4 - Kinematics 1
	Thurs	5-Sep	Studio 4-Kinematics 1
4	Mon	9-Sep Lecture 5 - Kinematics 2	Studio 5 - Kinematics 2
	Tues	10-Sep	Studio 5 - Kinematics 2
	Wed	11-Sep Lecture 6-Dynamics 1: Newton's 1st and 3rd	Studio 6-Dynamics 1: Newton's 1st and 3rd Laws
	Thurs	12-Sep	Studio 6-Dynamics 1: Newton's lst and 3rd Laws
5	Mon	16-Sep Lecture 7 - Dynamics 2: Newton's 2nd Law	Studio 7 - Dynamics 2: Newton's 2nd Law
	Tues	17-Sep	Studio 7 - Dynamics 2: Newton's 2nd Law
	Wed	18-Sep Lecture 8 - Dynamics 3: Applications of Newton's Laws	Studio 8-Dynamics 3: Jumping Grasshoppers 1
	Thu	19-Sep	Studio 8 - Dynamics 3: Jumping Grasshoppers 1
	Fri	20-Sep EXAM 1 (Modules 1-7)	
6	Mon	23-Sep Lecture 9 - Dynamics 4: Applications of Newton's Laws	Studio 9 - Dynamics 4: Jumping Grasshoppers 2
	Tues	24-Sep	Studio 9 - Dynamics 4: Jumping Grasshoppers 2
	Wed	25-Sep Lecture 10 - Impulse and Momentum	Studio 10 - Impulse and Momentum
	Thurs	26-Sep	Studio 10 - Impulse and Momentum
7	Mon	30-Sep Lecture 11 - Stress and Strain	Studio 11 - Stress and Strain
	Tues	1-Oct	Studio 11 - Stress and Strain
	Wed	2-Oct Lecture 12 - Torque 1	Studio 12 - Torque 1
	Thurs	3-Oct	Studio 12 - Torque 1
8	Mon	7-Oct Lecture 13 - Torque 2	Studio 13 - Torque 2
	Tues	8-Oct	Studio 13 - Torque 2
	Wed	9-Oct Lecture 14 - Energy 1: Forces, Work, and Kinetic Energy	Studio 14 - Energy 1: Forces, Work, and Kinetic Energy
	Taurs	10-Oct	Studio 14 - Energy 1: Forces, Work, and Kinetic Energy
	Fri	11-Oct EXAM 2 (Modules 8-13)	

Week	Day	Date Lecture Topic	Studio
9	Mon Tues Wed Thurs	14-Oct Lecture 15 - Energy 2: Forces, Work, and Kinetic Energy II 15-Oct 16-Oct Lecture X 17-Oct Holiday - Fall Break	Studio 15 - Energy 2: Forces, Work, and Kinetic Energy II Studio 15 - Energy 2: Forces, Work, and Kinetic Energy II No studios held today
10	Mon Tues Wed Thurs	```21-Oct Lecture 16 - Energy 3: Potential Energy 22-Oct 23-Oct Lecture 17-Energy 4: Walking and Rumning 24-Oct```	Studio 16 - Gravitational Potential Energy Studio 16 - Gravitational Potential Energy Studio 17 - Energy 4: Walking and Running Studio 17 - Energy 4: Walking and Rumning
11	Mon Tues Wed Thurs	```28-Oct Lecture 18 - Resilience 29-Oct 30-Oct Lecture 19 - Potential Energy Curves 31-Oct```	Studio 18 - Resilience Studio 18 -Resilience Studio 19 - Potential Energy Curves Studio 19 - Potential Energy Curves
12	Mon Tues Wed Thu Fri	```4-Nov Lecture 20-Chemical Energy 5-Nov 6-Nov Lecture 21-Oscillations 1 7-Nov 8-Nov EXAM 3 (Modules 14-20)```	Studio 20 - Chemical Energy Studio 20 - Chemical Energy Studio 21 - Oscillations 1 Studio 21 -Oscillations 1
13	Mon Tues Wed Thu	11-Nov Lecture 22 - Oscillations 2 12-Nov 13-Nov Lecture 23 - Thermodynamics 1 14-Nov	Studio 22 - Oscillations 2 Studio 22 -Oscillations 2 Studio 21 - Thermodynamics 1 Studio 21 - Thermodynamics 1
14	Mon Tues Wed Thurs	```18-Nov Lecture 24 - Thermodynamics 2 19-Nov 20-Nov Lecture 25-Diffusion 1 21-Nov```	Studio 24 - Thermodynamics 2 Studio 24 - Thermodynamics 2 Studio 25 - Diffusion 1 Studio 25 - Diffusion 1
15	Mon Tues Wed Thurs	25-Nov Lecture 26 - Diffusion 2 26-Nov 27-Nov Holiday - Thanksgiving 28-Nov Holiday - Thanksgiving	Studio 26 - Diffusion 2 Studio 26 - Diffusion 2 No studios held today No studios held today
16	Mon Tues Wed Fri Sat	2-Dec Lecture 27 - Heat Transfer 3-Dec 4-Dec Lecture Y - Review 6-Dec FINAL EXAM (Section 001) 7-Dec FINAL EXAM (Section 002)	Studio 27 - Heat Transfer Studio 27 - Heat Transfer No studios held today

Time

- Lecture should provide students with just enough information.
- Avoid long derivations, especially if they can be found in the book.
- Choose 1-2 complex problems for students to do in a class period (with accompanying TPS questions).

Data from two different physics classes

Exam 1

Data from two different physics classes

Exam 1

Data from two different physics classes

Data from two different physics classes

Exam 2

Data from two different physics classes

Exam 2

Data from two different physics classes

Exam 2

Data from two different physics classes

Exam 3

Data from two different physics classes

Exam 3

Data from two different physics classes

Exam 3

Data from two different physics classes

Final Exam

Data from two different physics classes

Final Exam

Data from two different physics classes

Final Exam

Resources

1) PowerPoint slide set "Using Think-Pair-Share (TPS) to Promote Quantitative Problem Solving: Sample Questions" on your USB drive

- Sample quantitative problems with TPS questions for introductory physics
- Topics include kinematics, Newton's laws, rotation, static equilibrium, work and energy, collisions, electric fields and forces, electric potential, DC circuits, magnetic fields and forces, induction, and optics

2) C. S. Wallace, "Developing Peer Instruction questions for quantitative problems for an upper-division astronomy course," American Journal of Physics (accepted), arXiv: 1909.02394
3) Feel free to contact me with any questions: cswphys@email.unc.edu
