#### Using Think-Pair-Share (TPS) to Promote Quantitative Problem Solving



Colin S. Wallace Dept. of Physics and Astronomy University of North Carolina at Chapel Hill <u>cswphys@email.unc.edu</u>

#### **Learning Outcomes**

Participants will be able to:

- Identify fundamental problem solving issues to target with TPS questions
- Describe how TPS question sequences can be used to promote student problem solving abilities
- Describe how TPS problem solving techniques can be implemented in the lecture portion of the course





Hint: Imagine that the arc is made up of many infinitesimally small point charges dq. Each dq creates a differential electric field of magnitude  $dE = k dq/r^2$ .

Sum up all the *dE*s from all the *dq*s to get the magnitude of the overall electric field.

Integration is a way to add many infinitely small elements.



What is true about the electric fields produced by the two *dq* elements shown in grey on the left?

- A) Their *x*-components cancel out and their *y*-components add together.
- B) Their x-components add together and their y-components cancel out.
  - C) Both their *x* and *y*-components add together.
  - D) Both their *x* and *y*-components cancel out.

Since the *y*-components of the electric field cancel out, we only have to add the *x*-components.

What is the magnitude of the *x*component of *dE* due to the *dq* element shown in grey?



 $\frac{dq}{2}\sin(\theta)$ 

 $\rightarrow X$ 

 $dE_v = k$ 

COS

θ

 $dE_x$ 



We need to integrate over all angles ( $\theta$ ), but  $dE_x$  is in terms of dq, not  $d\theta$ .

Solution: Relate dq to arc length ds using linear charge density  $\lambda$ 

 $dq = \lambda ds$ 

How is the differential arc length ds related to the differential angle  $d\theta$ ?

A) 
$$ds = r d\theta$$
  
B)  $ds = r^2 d\theta$   
C)  $ds = d\theta/r$ 

D)  $ds = d\theta/r^2$ 



Magnitude of the electric field at the origin:



$$E = \frac{3kQ}{\pi r^2}$$

What is the direction of the electric field at the origin?

#### **Idealized Implementation**

- Give a tightly-focused mini-lecture and then present the quantitative problem to your students.
- Give students 2-5 minutes to work on the problem before asking the first TPS question.
  - Students need time to interpret the question and realize they are stuck.
- Circulate around the room while students are working and engaged in discussions with their neighbors.
  - Listen to what students are saying to each other.
  - Students are more likely to ask you questions if you're nearby.
- Give students time to finish the problem after the last TPS question and debrief interactively.

#### **Using Voting Questions**

- Choose a quantitative problem that requires students to use multiple pieces of physics and astronomy knowledge.
- Turn specific student difficulties into TPS questions.
- Answer choices are mathematical expressions/quantitative relationships.
- Wrong answers ("distractors") represent real errors students frequently make.

#### Where Will Students Struggle?

- Students will likely struggle when they have to do more than plugging in a number, performing an algebraic manipulation, or executing a well known algorithm.
- ACER Framework for Problem Solving (Caballero *et al.* 2015):

- Activation of mathematical tool

- Construction of mathematical model
- Execution of the math
- Reflection

"...the majority of execution errors observed in this study were made by students who had already made one or more significant mistakes in the activation or construction components of the their solution." (Wilcox and Corsiglia 2019)

#### Time

| Week | Day        | Date Lecture Topic                                  | Studio                                                 | Weel | a Day | Date Lecture Topic                               | Studio                                                    |
|------|------------|-----------------------------------------------------|--------------------------------------------------------|------|-------|--------------------------------------------------|-----------------------------------------------------------|
| 1    | Tue        | 20-Aug                                              | First day of classes - No studio                       | 9    | Mon   | 14-Oct Lecture 15 - Energy 2: Forces, Work, and  | Studio 15 - Energy 2: Forces, Work, and Kinetic Energy II |
|      | Wed        | 21-Aug Lecture 1 - Introduction                     | Studio 1 - Common Cents                                |      | Trees | Kinetic Energy II                                | Studio 15 - Energy 2: Energy Work and Vinatic Energy II   |
|      | Thurs      | 22-Aug                                              | Studio 1 - Common Cents                                |      | Wed   | 15-oct                                           | No studios hold today                                     |
| 2    | Mon        | 26-Aug Lecture 2 - Scaling 1                        | Studio 2 - Scaling 1                                   |      | Thurs | 17-Oct Holiday - Fall Break                      | ivo stados nena today                                     |
|      | Tues       | 27-Aug                                              | Studio 2 - Scaling 1                                   | 10   | Mon   | 21-Oct Lecture 16 - Energy 3: Potential Energy   | Studio 16 - Gravitational Botantial Pharmy                |
|      | Wed        | 28-Aug Lecture 3 - Scaling 2                        | Studio 3 - Scaling 2                                   | 10   | Trees | 21-Oct Lecture 10 - Energy 5. Potential Energy   | Studio 16 - Gravitational Potential Energy                |
|      | Thurs      | 29-Aug                                              | Studio 3 - Scaling 2                                   |      | Wed   | 22-Oct 1 acture 17 Energy 4: Welking and Punning | Studio 17 - Gravitational Potential Energy                |
| 3    | Mon        | 2-Sep Holiday - Labor Day                           | No studios held today                                  |      | Thur  | 23-Oct Lecture 17 - Energy 4. waiking and Rummig | Studio 17 - Energy 4: Walking and Running                 |
|      | Tues       | 3-Sep                                               | No studios held today                                  | 11   | Mon   | 28-Oct Lecture 18 - Resilience                   | Studio 17 - Energy 4. waiking and Ruming                  |
|      | Wed        | 4-Sep Lecture 4 - Kinematics 1                      | Studio 4 - Kinematics 1                                |      | Tree  | 20-Oct Decime 10 - Residence                     | Studio 10 Paviliance                                      |
|      | Thurs      | 5-Sep                                               | Studio 4 - Kinematics 1                                |      | Tues  | 29-Oct 20-Oct 20-Detected Energy Correspondence  | Studio 10 - Residence                                     |
| 4    | Mon        | 9-Sep Lecture 5 - Kinematics 2                      | Studio 5 - Kinematics 2                                |      | wea   | 30-Oct Lecture 19 - Potential Energy Curves      | Studio 19 - Potential Energy Curves                       |
|      | Tues       | 10-Sep                                              | Studio 5 - Kinematics 2                                | 12   | Man   | A New Leadure 20. Chemical Energy                | Studio 19 - Potential Energy Curves                       |
|      | Wed        | 11-Sep Lecture 6 - Dynamics 1: Newton's 1st and 3rd | Studio 6 - Dynamics 1: Newton's 1st and 3rd Laws       | 12   | Mon   | 4-Nov Lecture 20 - Chemical Energy               | Studio 20 - Chemical Energy                               |
|      | Thurs      | 12-Sep                                              | Studio 6 - Dynamics 1: Newton's 1st and 3rd Laws       |      | Tues  | S-Nov                                            | Studio 20 - Chemical Energy                               |
| 5    | Mon        | 16-Sep Lecture 7 - Dynamics 2: Newton's 2nd Law     | Studio 7 - Dynamics 2: Newton's 2nd Law                |      | wea   | 6-Nov Lecture 21 - Oscillations 1                | Studio 21 - Oscillations 1                                |
|      | Tues       | 17-Sep                                              | Studio 7 - Dynamics 2: Newton's 2nd Law                |      | Inu   | 7-Nov                                            | Studio 21 - Oscillations 1                                |
|      | Wed        | 18-Sep Lecture 8 - Dynamics 3: Applications of      | Studio 8 - Dynamics 3: Jumping Grasshoppers 1          | 12   | Fn    | 8-Nov EXAM 3 (Modules 14-20)                     | Studio 22 Occillations 2                                  |
|      | <b>Thu</b> | Newton's Laws                                       | Studio 9 Demonsion 2: Jumping Grasshamore 1            | 15   | Mon   | 11-Nov Lecture 22 - Oscillations 2               | Studio 22 - Oscillations 2                                |
|      | Thu        | 19-Sep EXAM 1 (Modules 1.7)                         | Studio 8 - Dynamics 5, Jumping Grassnoppers 1          |      | Tues  | 12-Nov                                           | Studio 22 - Oscillations 2                                |
| 6    | Man        | 22 Sep Laster 0. Denomics 4: Applications of        | Studia 0. Demonsion 4: Jumping Grandhamara 2           |      | Wed   | 13-Nov Lecture 23 - Thermodynamics 1             | Studio 21 - Thermodynamics 1                              |
|      | NIGH       | Newton's Laws                                       | Studio 9 - Dynamics 4. Jumping Grasshoppers 2          |      | Thu   | 14-Nov                                           | Studio 21 - Thermodynamics 1                              |
|      | Tues       | 24-Sep                                              | Studio 9 - Dynamics 4: Jumping Grasshoppers 2          | 14   | Mon   | 18-Nov Lecture 24 - Thermodynamics 2             | Studio 24 - Thermodynamics 2                              |
|      | Wed        | 25-Sep Lecture 10 - Impulse and Momentum            | Studio 10 - Impulse and Momentum                       |      | Tues  | 19-Nov                                           | Studio 24 - Thermodynamics 2                              |
|      | Thurs      | 26-Sep                                              | Studio 10 - Impulse and Momentum                       |      | Wed   | 20-Nov Lecture 25 - Diffusion 1                  | Studio 25 - Diffusion 1                                   |
| 7    | Mon        | 30-Sep Lecture 11 - Stress and Strain               | Studio 11 - Stress and Strain                          |      | Thurs | 21-Nov                                           | Studio 25 - Diffusion 1                                   |
|      | Tues       | 1-Oct                                               | Studio 11 - Stress and Strain                          | 15   | Mon   | 25-Nov Lecture 26 - Diffusion 2                  | Studio 26 - Diffusion 2                                   |
|      | Wed        | 2-Oct Lecture 12 - Torque 1                         | Studio 12 - Torque 1                                   |      | Tues  | 26-Nov                                           | Studio 26 - Diffusion 2                                   |
|      | Thurs      | 3-Oct                                               | Studio 12 - Torque 1                                   |      | Wed   | 27-Nov Holiday - Thanksgiving                    | No studios held today                                     |
| 8    | Mon        | 7-Oct Lecture 13 - Torque 2                         | Studio 13 - Torque 2                                   |      | Thurs | 28-Nov Holiday - Thanksgiving                    | No studios held today                                     |
| -    | Tues       | 8-Oct                                               | Studio 13 - Torque 2                                   | 16   | Mon   | 2-Dec Lecture 27 - Heat Transfer                 | Studio 27 - Heat Transfer                                 |
|      | Wed        | 9-Oct Lecture 14 - Energy 1: Forces, Work, and      | Studio 14 - Energy 1: Forces, Work, and Kinetic Energy |      | Tues  | 3-Dec                                            | Studio 27 - Heat Transfer                                 |
|      |            | Kinetic Energy                                      |                                                        |      | Wed   | 4-Dec Lecture Y - Review                         | No studios held today                                     |
|      | Thurs      | 10-Oct                                              | Studio 14 - Energy 1: Forces, Work, and Kinetic Energy |      | Fri   | 6-Dec FINAL EXAM (Section 001)                   |                                                           |
|      | Fri        | 11-Oct EXAM 2 (Modules 8-13)                        |                                                        |      | Sat   | 7-Dec FINAL EXAM (Section 002)                   |                                                           |

#### Time

- Lecture should provide students with just enough information.
- Avoid long derivations, especially if they can be found in the book.
- Choose 1-2 complex problems for students to do in a class period (with accompanying TPS questions).

























#### Resources

- 1) PowerPoint slide set "Using Think-Pair-Share (TPS) to Promote Quantitative Problem Solving: Sample Questions" on your USB drive
  - Sample quantitative problems with TPS questions for introductory physics
  - Topics include kinematics, Newton's laws, rotation, static equilibrium, work and energy, collisions, electric fields and forces, electric potential, DC circuits, magnetic fields and forces, induction, and optics
- 2) C. S. Wallace, "Developing Peer Instruction questions for quantitative problems for an upper-division astronomy course," *American Journal of Physics* (accepted), arXiv: 1909.02394
- 3) Feel free to contact me with any questions: <u>cswphys@email.unc.edu</u>