2022 PhysicsBowl Answers and Solutions

1. A $\quad \mathrm{KE}_{1}=\mathrm{KE}_{2} ; 1 / 2 \mathrm{~m}_{1} \mathrm{v}_{1}^{2}=1 / 2 \mathrm{~m}_{2} \mathrm{v}_{2}{ }^{2} ; \mathrm{v}_{1}=6.9 \mathrm{~m} / \mathrm{s}$
2. B See: https://www.space.com/20790-eugene-cernan-astronaut-biography.html
3. $\mathbf{C} \quad v=\frac{2 \pi r}{t} ; a=\frac{v^{2}}{r}$
4. B $\quad m v_{\text {before }}=(m+M) v_{\text {after }} ; v_{\text {after }}=\frac{m v_{\text {before }}}{(m+M)}$;
$K E=\frac{1}{2}(m+M) v^{2}{ }_{\text {after }}=\frac{1}{2} \frac{m^{2} v^{2}{ }_{\text {before }}}{(m+M)} ; \mathrm{W}=\mu(m+M) \mathrm{g} \Delta \mathrm{x}$
5. B $\quad v=v_{0}+a t ; \sum \vec{F}=m \vec{a}$
6. D The sum will not equal one of the magnitudes.
7. E Violet: $380-430 \mathrm{~nm}$, Blue: $430-500 \mathrm{~nm}$, Cyan: $500-520 \mathrm{~nm}$, Green: $520-565 \mathrm{~nm}$, Yellow: $565-580 \mathrm{~nm}$, Orange: $580-625 \mathrm{~nm}$, Red: $625-740 \mathrm{~nm}$
8. C $P V=n R T$
9. B KE converted to gravitational potential energy, thermal energy, and work
10. $\mathbf{E} \omega=2 \pi f ; t=\frac{1}{f}=2 \pi \sqrt{\frac{m}{k}} ; \omega=\sqrt{\frac{k}{m}} ; F_{\max }=m \omega^{2} A$
11. E See: https://en.wikipedia.org/wiki/James_E._Webb
12. C $\frac{1.5 \times 10^{9} \mathrm{~m}}{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}=5 \mathrm{~s}$
13. A $\mathrm{V}=(\mathrm{l})(\mathrm{A}) ; \mathrm{A}=\pi \mathrm{r}^{2}$
14. D $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
15. D $T_{1}=2 \pi \sqrt{\frac{60}{g}} ; T_{2}=2 \pi \sqrt{\frac{63}{g}} ; \mathrm{t}=(\mathrm{n}+1) \mathrm{T}_{1}=\mathrm{nT}_{2}$
16. $\mathrm{C} \quad R=\frac{\rho l}{A} ; \frac{\Delta R}{R}=2 \frac{\Delta l}{l}$
17. E In the absence of friction, all gravitational potential energy will be converted to kinetic energy at the bottom of the plane.
18. C $\Delta x=v_{0} t+\frac{1}{2} a t^{2} ; \mathrm{t}=2$
19. B $\quad F_{\text {air }}=\rho A v ; F_{g}=m g ; \rho A v=m g$
20. D $\quad F_{f}=\mu m g ; F_{g}=m g ; \mu m g=m g$
21. $\mathbf{C} \quad T_{2}=\frac{\left(m_{1}+m_{2}\right) F}{\left(m_{1}+m_{2}+m_{3}\right)}$
22. $\mathbf{E} \quad a_{c}=a_{T}=10 \frac{c m}{s^{2}} ; a_{T}=\omega^{2} r ; \omega=\omega_{0}+\alpha t$
23. B $\quad F_{g}=G \frac{m_{1} m_{2}}{r^{2}} ; F_{e}=k \frac{q_{1} q_{2}}{r^{2}}$
24. $\mathbf{C} \quad T=\sum F=m a+m g$
25. B With a one-wavelength path-length difference, crests will meet crests and troughs will meet troughs.
26. E Only choice with correct values
27. $\mathbf{E} \quad n=\frac{F}{m v}$
28. B $W_{s}=\frac{1}{2} k x^{2} ; W_{f}=\frac{1}{2} m v^{2}-W_{s} ; W_{f}=\mu m g \Delta x$
29. B $\quad P=F v$
30. B $t=\frac{1}{60} s$ for each of the five displacement intervals.
31. B $t_{1}=\sqrt{\frac{2 h}{g}}=0.7 \mathrm{~s} ; t_{2}=0.35 \mathrm{~s} ; \Delta x=\frac{1}{2} g t_{2}{ }^{2}$
32. $\mathbf{E} \quad L=I \omega=\frac{2}{5} M R^{2} \frac{2 \pi}{T}$
33. D $\quad d B=10 \log \left(\frac{I}{I_{0}}\right) ; I_{0}=10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
34. $\mathbf{C} \quad \sum F=F_{e}+F_{g}=q E+m g$
35. $\mathbf{E} \quad \frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{i}}$
36. A There is no dispersion in a glass block with parallel sides.
37. A $\Delta x_{r e l}=\Delta x-\frac{1}{2} a t^{2}=6 \mathrm{~m} ; v_{r e l}=20 \frac{\mathrm{~m}}{\mathrm{~s}}-16 \frac{\mathrm{~m}}{\mathrm{~s}}=4 \frac{\mathrm{~m}}{\mathrm{~s}} ; a_{r e l}=a_{c a r}-a_{t r u c k}$;

$$
a_{c a r}=a_{t r u c k}+\frac{v_{r e l}^{2}}{2 \Delta x_{r e l}}
$$

38. A With no resistance, $\Delta \mathrm{V}$ will be the same across both components.
39. D $\vec{R}=\sqrt{p^{2}+\left(\frac{4 p}{3}\right)^{2}} ; \tan \theta=\frac{\frac{4 p}{3}}{p}=53^{\circ} ; 180^{\circ}-53^{\circ}=127^{\circ}$
40. D $\quad I_{1} \omega_{1}=(0.8) I_{2} \omega_{2}$
41. $\mathrm{C} \quad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
42. $\mathrm{B} \quad R_{p}=2 \Omega ; R_{\text {total }}=5 \Omega ; \mathrm{V}=\mathrm{IR} ; \mathrm{I}=24 \mathrm{~A}$
43. B $\quad n_{1} \sin \Theta_{1}=n_{2} \sin \Theta_{2}$
44. C $\quad N(t)=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{t_{1} / 2}}$
45. B $\quad q E=q v B$
46. B The electric fields are pointed in opposite directions (45° and 225° from the x -axis) and therefore cancel each other out. Since each arc is a collection of point charges located the same distance from the origin, then: $V=\frac{k Q}{R}$. Both arcs create positive potentials, so $V=2\left(\frac{k Q}{R}\right)$.
47. A $\quad F=F_{f}-F_{g}=\mu m g \cos \theta-m g \sin \theta$
48. D Combination Z , with three resistors in parallel, offers the least amount of resistance. Combination X, with two resistors in parallel and one in series, offers the most resistance.
49. C There are three main factors to consider here. The gravitational constant, G, the mass of the sun, M, and the distance between the sun and the earth, R. The units of G are $\frac{m^{3}}{(k g) s^{2}}$, the units of M are $k g$, the units of R are m, and we want to solve for time in seconds. Using dimensional analysis to solve for seconds, we get Time $=\sqrt{\frac{R^{3}}{G M}}=5.1 \times 10^{6}$ seconds $=59$ days. Using calculus, one arrives at 64.5 days.
50. C $\quad P V=n R T$; At the end of Stage 1: $\mathrm{P}=5.05 \times 10^{4} \mathrm{~Pa}, \mathrm{~V}=2 \mathrm{~m}^{3}$, and $\mathrm{T}=273.15 \mathrm{~K}$. At The end of Stage $2, \mathrm{P}=1.01 \times 10^{5} \mathrm{~Pa}, \mathrm{~V}=2 \mathrm{~m}^{3}$, and $\mathrm{T}=546.3 \mathrm{~K} . \mathrm{n}=44.3 \mathrm{~mol}$ through the entire problem. Work done in Stage 3: $\mathrm{W}_{3}=\mathrm{P}_{3}\left(\mathrm{~V}_{1}-\mathrm{V}_{3}\right)$.
