HYPERBOLA GEOMETRY

Euclidean distance is based on the unit circle; the set of points which are unit distance from the origin. Hyperbolic geometry is obtained simply by using a different distance function! Measure the “separation distance” of a point \(B = (x, y) \) from the origin using the definition:

\[d_{H}(O, B) = \sqrt{x^2 - y^2} \]

Then, as shown below the unit “circle” becomes the unit hyperbola

\[x^2 - y^2 = 1 \]

and we further restrict ourselves to the branch with \(x > 0 \) if \(B \) is a point on this hyperbola, then we can define the hyperbolic angle \(\beta \) between the line from the origin to \(B \) and the (positive) \(x \)-axis to be the Lorentzian length of the arc of the unit hyperbola between \(B \) and the point \((1, 0)\), where \(d_{H}(O, (1, 0)) = \sqrt{2} \). We could then define the hyperbolic trig functions to be the coordinates \((x, y)\) of \(B \), that is

\[
\begin{align*}
\cosh \beta &= x \\
\sinh \beta &= y
\end{align*}
\]

and by symmetry, the point \(A \) on this hyperbola has coordinates \((x, y) = (\sinh \beta, \cosh \beta)\). See the figure below. A little work shows that this definition is exactly the same as the standard one, namely

\[
\begin{align*}
\cosh \beta &= \frac{e^\beta + e^{-\beta}}{2} \\
\sinh \beta &= \frac{e^\beta - e^{-\beta}}{2}
\end{align*}
\]

To see this, use \(x^2 - y^2 = 1 \) to compute

\[dH(O, (x, y)) = \sqrt{x^2 - y^2} \]

then take the square root of either expression and integrate. (The integrals are hard.) Finally, solve for \(x \) or \(y \) in terms of \(\beta \).

ACKNOWLEDGMENTS

This approach to special relativity grew out of class notes for a course in Reference Frames, which in turn forms part of a major upper-division curriculum reform effort, the Paradigms in Physics project [1], begun in the Department of Physics at Oregon State University in 1997, and supported in part by NSF grants DUE-955290 and DUE-922194. This presentation is largely excerpted from a book in preparation [2], where further details can be found, and has also appeared in [3].

REFERENCES

TRIANGLE TRIG

We now recast ordinary triangle trig into hyperbola geometry. Suppose you know \(\tan \beta = \frac{y}{x} \) and you wish to determine \(\cosh \beta \).

One can of course do this algebraically, using the identity

\[\cosh \beta = \frac{1}{\sqrt{1 - \sinh^2 \beta}} \]

But it is easier to draw an equilateral triangle containing an angle whose hyperbolic tangent is \(\frac{y}{x} \). In this case, the obvious choice would be the triangle shown above, with sides \(4 \) and 5.

What is \(\cosh \beta \)? Well, we first need to work out the length \(\delta \) of the hypotenuse. The (hyperbolic) Pythagorean Theorem tells us that

\[x^2 - y^2 = \delta^2 \]

so \(\delta = 4 \). Take a good look at this 3-4-5 triangle of hyperbola geometry. Note that we know all the sides of the triangle, it is easy to see that \(\cosh \beta = \frac{5}{4} \).

LORENTZ TRANSFORMATIONS

The Lorentz transformation from a moving frame \((x', y')\) to a frame \((x, y)\) at rest is given by

\[
\begin{align*}
x &= \gamma (x' + v y') \\
y &= y'
\end{align*}
\]

where \(\gamma = \frac{1}{\sqrt{1 - v^2}} \). We can simplify things still further: Introduce the rapidity \(\beta \) via

\[\gamma = \cosh \beta \]

Inserting this into the expression for \(\gamma \) we obtain

\[
\gamma = \sqrt{1 + \tanh^2 \beta} = \sqrt{1 + \sinh^2 \beta} = \frac{1}{\cos \beta}
\]

and

\[\tanh \beta = \frac{\sinh \beta}{\cosh \beta} = \frac{y}{x} \]

Inserting these identities into the Lorentz transformations above brings them to the remarkably simple form

\[\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cosh \beta & \sinh \beta \\ \sinh \beta & \cosh \beta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} \]

Lorentz transformations are just hyperbolic rotations!