ngholmes@cornell.edu cperl.lassp.cornell.edu @ng_Holmes

USING PHYSICS LABS TO TEACH EXPERIMENTATION AND CRITICAL THINKING

NATASHA G. HOLMES CORNELL PHYSICS EDUCATION RESEARCH LAB LABORATORY OF ATOMIC & SOLID STATE PHYSICS PHYSICS DEPARTMENT, CORNELL UNIVERSITY

LEARNING GOALS

By the end of this session, you should be able to:

- List learning outcomes for lab instruction about experimentation,
- Describe the *iterative cycles* framework and explain how it teaches critical thinking, and
- Identify instructional decisions that facilitate the iterative cycles.
 I will share all our materials with you after the workshop!

Big picture (What and why)

Hands-on example (How)

Case

study

(How)

Big picture (How)

Choose your own adventure:

- What we do
- Design a lab
- TA training
- Grading...

3

AAPT Recommendations for the Undergraduate PHYSICS EDUCATION AAPT Recommendations for the Undergraduate

Report prepared by a Subcommittee of the AAPT Committee on Laboratories Endorsed by the AAPT Executive Board November 10, 2014

TRADITIONAL 'VERIFICATION' LABS

Confirmatory

No measurable added value to learning content

Deteriorate student attitudes towards experimental physics

THE THING ABOUT VERIFICATION LABS

Holmes & Wieman (2018); Holmes, Olsen, Thomas & Wieman (2017) Wilcox & Lewandowski (2016, 2017)

THE EXTREME CASE

WHAT IS Critical Thinking?

The ways in which you make decisions about what to trust and what to do.

WHY CRITICAL THINKING?

Report prepared by a Subcommittee of the AAPT Committee on Laboratories Endorsed by the AAPT Executive Board November 10, 2014

ACTIVITY: PENDULUM FOR PROS

Does the period of a pendulum differ when released from different amplitudes (10° and 20°)? $T = 2\pi \int_{a}^{L} \frac{L}{a}$

Handout:

- Make a plan, discuss plan with another group, carry out plan.
- Find ways to improve plan, discuss improvements with another group, carry improved plan out.

LAB QUESTION:

Does the period of a pendulum differ when released from different amplitudes (10° and 20°)?

- Measure time for single period, T
- Repeat 10 times, find average, standard error

Holmes & Bonn (2015) The Physics Teacher

STRUCTURE

What might a difference of 0.2σ mean?

$$t' = \frac{T_{10^{\circ}} - T_{20^{\circ}}}{Uncertainty}$$

Small difference means values are close AND/OR uncertainty is large

STRUCTURE

- Measure time, t, for 20 periods
- Divide by 20 to get period, repeat average, standard error...

Holmes & Bonn (2015) The Physics Teacher

the opposite of the expected choppened: truppor > 3 => concentred values are different Conclusion . The period of a pendulum does depend on the angle ownth the votical in the initial position. The algebraically derived primula for $T \approx 2 tr \sqrt{\frac{2}{g}}$ of a pendulum is only balid for gConsidering Alle results of Unis experiment, 20° is obviously not 'small' cenough since the angle thas an effect on the porod to and should be somehim represented in the formula. ilf you can imake a preise cenough interment, you can show that the alleritical derivation of the equation of motion for a pendulum is just a good approximation and reality is slightly more complicated.

PERIOD AS A FUNCTION OF ANGLE

"The pendulum experiment we did at the beginning of the year, I think that really made a mark on me. Because I went in there expecting it [the period at 10 and 20 degrees] to be the same, because that's what I was taught. And then, when you finally figure out that, 'oh, it's supposed to be different,' and then I was like, 'Oh! I probably shouldn't be doing experiments with bias going in.'"

Big picture (What and why)

Hands-on example (How)

Case

study

(How)

Big picture (How)

Choose your own adventure:

- What we do
- Design a lab
- TA training
- Grading...

20

- Comparisons help students make sense of results
- Agency and freedom to make decisions (and mistakes)
- Feedback and support to learn from decisions
- Opportunities and time to revise and improve
- Situations where physics isn't 'perfect' (deal with disagreements)

Gick & Holyoak (1980, 1983); Bransford et al. (1989); Ericsson et al. (1993); Bransford & Schwartz (1999); Kapur (2008)... ²²

A NOTE ON STRUCTURE

Traditional

Goal defined

Specific equipment provided

All experimental decisions made

Full open-ended

No goal defined

Room full of equipment provided

No experimental decisions made

CORNELL INTRO LAB LEARNING GOALS:

By the end of the three-course intro lab sequence, students should be able to:

- I. Collect data and revise the experimental procedure iteratively, reflectively, and responsively,
- 2. Evaluate the process and outcomes of an experiment quantitatively and qualitatively,
- 3. Extend the scope of an investigation whether or not results come out as expected,
- 4. Communicate the process and outcomes of an experiment, and
- 5. Conduct an experiment collaboratively and ethically.

Visit cperl.lassp.cornell.edu for the full list

CORNELL LAB ACTIVITIES

Lab	Mechanics	E & M	Waves & Optics		
I	Pendulum for	Circuits	Polarization		
2	Pros	Circuits	Diffraction		
3	Bouncing Ball		Standing Waves		
4	Terminal	Faraday's Law			
5	Velocity	Magnetic field	Project Lab		
6	Hooke's Law	from a coil			
7	HOOKE'S Law	LEDs project lab			
8	Due je st. Leh				
9	Project Lab	lau			
Note: Fach course has 15 weeks of instruction but 9 weeks of lab					

Note: Each course has 15 weeks of instruction, but 9 weeks of lab sessions.

GRADING

Rubrics score student lab notes on five elements:

Three that repeat each week:

- What are you doing?
- Why are you doing it?
- What will you do next?

And two that are week-specific.

REPEATED RUBRIC ELEMENTS:

General		Proficient (I)	Beginning (0.5)	Missing (0)
Experimental Process	What are you doing?	Detailed descriptions of experimental procedures, data analysis, and decisions are provided throughout the investigation.	descriptions of what was done, but some	
	Why are you doing it?	Justification for all decisions is provided including for choices in experimental procedure, data collection, and data analysis. Most justifications come from evidence such as data.	decisions are rarely provided or justifications rarely	No decisions or methods are justified.
	What will you do next?	Follow-up actions are suggested based on experimental results and at least one follow-up is pursued, especially to improve methods or models.	suggested but not	No follow-up is proposed.

PENDULUM RUBRIC

Pendulum for Pros		Proficient (1)	Beginning (0.5)	Missing (0)
Points of Emphasis	Experimental uncertainty	Major physical sources of uncertainty are identified and experimental methods include plans to quantify and minimize their impact. The size of uncertainty is reflected on throughout, especially after attempts to minimize them.	identified but missing plans to quantify, plans to	discussion of physical sources
	Comparing measurements	Measurements (values and uncertainties) are compared and appropriately interpreted. A decision about what to do with the information is clearly communicated and follows logically from the comparison.	and uncertainties) are compared. The interpretation or follow-	(values and uncertainties) are not

HOW TO ASSES THE LABS (NOT THE STUDENTS)

- PLIC: closed-response assessment of students' critical thinking skills in context of intro physics labs
 - cperl.lassp.cornell.edu/PLIC
- E-CLASS: survey of students' attitudes and beliefs about experimental physics
- CDPA: multiple choice test of student understanding of data analysis
- Physics Measurement Questionnaire: open-response assessment of student understanding of uncertainty and measurement

THE BIG THINGS:

 Change the goals to focus on process rather than product

• Spread labs over multiple sessions

• Give students some agency

THE BIG THINGS:

- Change the goals to focus on process rather than product
 - Narrow and focus goals per lab
 - Grade for their decision-making, not their result
- Spread labs over multiple sessions
 - -Give them time to go deep in a few experiments
- Give students some agency
 - Remove some of the structure and let students make decisions in a constrained space
 - Use experiments where students don't know the "answer" so they use experiment for discovery, not confirmation
 - -Use experiments where the result is surprising

LEARNING GOALS:

By the end of this session, you should be able to:

- List learning outcomes for lab instruction about critical thinking,
- Describe the *iterative cycles* framework and explain how it teaches critical thinking, and
- Identify instructional decisions that facilitate the iterative cycles.

RESOURCES

Our webpage: cperl.lassp.cornell.edu (more to appear on PhysPort.org soon)

Contact me: ngholmes@cornell.edu

Other materials also at: sqilabs.phas.ubc.ca

Citations:

- Holmes, N. G., & Wieman, C. E. (2018). Introductory physics labs: We can do better. Physics Today, 71(1), 38–45. <u>https://doi.org/10.1063/PT.3.3816</u>
- Holmes, N. G., & Smith, E. M. (2018). Operationalizing the AAPT Learning Goals for the Lab (accepted to The Physics Teacher)
- Holmes, N. G., Olsen, J., Thomas, J. L., & Wieman, C. E. (2017). Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content. Physical Review Physics Education Research, 13(1), 010129. <u>https://doi.org/10.1103/PhysRevPhysEducRes.13.010129</u>
- Holmes, N. G., & Bonn, D. A. (2015). Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab. The Physics Teacher, 53(6), 352–355. <u>https://doi.org/10.1119/1.4928350</u>
- Holmes, N. G., Wieman, C. E., & Bonn, D. A. (2015). Teaching critical thinking. PNAS, 112(36), 11199–11204. <u>https://doi.org/10.1073/pnas.1505329112</u>

Thank you!!