NSF/MPS Grant Opportunities

Keith R. Dienes
Division of Physics (PHY)

Hans Krimm
Division of Astronomy (AST)

Leonard Spinu
Division of Materials Research (DMR)

http://www.nsf.gov/

AAPT New Faculty Workshop
November 2, 2017
NSF has moved!
... from Arlington, VA to Alexandria, VA

Before:

25 mins to/from DCA

4201 Wilson Blvd.
Arlington, VA 22230

Now:

10 mins to/from DCA

2415 Eisenhower Ave.
Alexandria, VA 22314
NSF Vision and Goals

• **Vision:** A nation that creates and exploits new concepts in science and engineering and provides global leadership in research and education

• **Mission:** To promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense …

• **Strategic Goals:**
 • Transform the frontiers of science and engineering
 • Stimulate innovation and address societal needs through research & education
 • Excel as a Federal science agency
NSF Support of Academic Basic Research in Selected Fields
(as a percentage of total federal support in 2015)

- Computer Science: 83%
- Biology: 69%
- Social and Psychological Sciences: 68%
- Mathematics: 64%
- Environmental Sciences: 63%
- Engineering: 46%
- Physical Sciences: 45%
- All Science and Engineering Fields: 27%

Note: Biology includes Biological Science and Environmental Science. Biology and Psychological Sciences exclude National Institutes of Health funding from the total amount of federal support.

Source: NSF/National Center for Science and Engineering Statistics, Survey of Federal Funds for Research and Development
NSF Organization Chart

Office of the Inspector General (OIG)
($14.8M)

National Science Board (NSB)
NSB Office
($4.3M)

Director
Deputy Director
$7,494 M
NSF total

Office of International Science & Engineering (OISE)
$49M

Office of the General Counsel (OGC)

Office of Diversity & Inclusion (ODI)

Office of Integrative Activities (OIA)

Office of Legislative & Public Affairs (OLPA)

$1,349M

Mathematical & Physical Sciences (MPS)

NSF total
$7,494 M

Biological Sciences (BIO)
$724M

Computer & Information Science & Engineering (CISE)
$935M (ACI $222M)

Engineering (ENG)
$916M

Geosciences (GEO)
$877M (PLR $442M)

Social, Behavioral & Economic Sciences (SBE)
$272M

Education & Human Resources (EHR)
$884M

Budget, Finance & Award Management (BFA)
(MREFC $241.5M)

Information & Resource Management (OIRM)
(AOAM $351.1M)

Office of the Inspector General (OIG)
($14.8M)

National Science Board (NSB)
NSB Office
($4.3M)

Director
Deputy Director
$7,494 M
NSF total

Office of International Science & Engineering (OISE)
$49M

Office of the General Counsel (OGC)

Office of Diversity & Inclusion (ODI)

Office of Integrative Activities (OIA)

Office of Legislative & Public Affairs (OLPA)

$1,349M

Mathematical & Physical Sciences (MPS)

NSF total
$7,494 M

Biological Sciences (BIO)
$724M

Computer & Information Science & Engineering (CISE)
$935M (ACI $222M)

Engineering (ENG)
$916M

Geosciences (GEO)
$877M (PLR $442M)

Social, Behavioral & Economic Sciences (SBE)
$272M

Education & Human Resources (EHR)
$884M

Budget, Finance & Award Management (BFA)
(MREFC $241.5M)

Information & Resource Management (OIRM)
(AOAM $351.1M)

Numbers are FY2016 Actuals
Funding Rates

FY 17

NSF: 23%
Median Annualized Award Size and Duration

Award duration 1-5 years
(longer allowed, but rare)
How to Apply for Funding

In general, you submit a proposal via fastlane.nsf.gov or research.gov to a particular Solicitation within a particular Division, specifying a particular Program.

- Designating secondary programs for co-review is OK if your work is inter-cross/disciplinary.
- If your selection is inappropriate, we will try to find the correct intellectual home for your proposal and transfer it internally.
How to find the right Solicitation and/or Program?

- Investigate Program websites
- Search the Award Database (at nsf.gov) using relevant keywords to see what has already been funded in different programs.
- Talk to your colleagues in similar discipline (but beware that things may have changed).
- **Read** the relevant Solicitation.
- Contact the relevant Program Director?
 - One or two paragraphs describing the project
 - Possible phone call to discuss project

Not to get a scientific evaluation, but to discuss appropriateness for that Program.
www.nsf.gov — Search Current Awards
www.nsf.gov/awardsearch

dark matter

<table>
<thead>
<tr>
<th>Collaborative Research: Direct Search for Dark Matter with Underground Argon at LNGS</th>
<th>Award Number: 1314443; Principal Investigator: C. J. Martoff; Co-Principal Investigator(s):; Organization: Temple University; NSF Organization: PHY Start Date: 06/15/2014; Award Amount: $526,442.00; Reference: 15-540</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Purest Dark Matter Halos and the Processes of Galaxy Evolution</td>
<td>Award Number: 1713841; Principal Investigator: Dennis Zaritsky; Co-Principal Investigator: Alan Strauss; Organization: University of Arizona; NSF Organization: AST Start Date: 08/15/2017; Award Amount: $667,637.00; Reference: 47.63;</td>
</tr>
<tr>
<td>On the Relation Between Halos and Dark Matter Halos</td>
<td>Award Number: 1612087; Principal Investigator: Lidi Zenati; Co-Principal Investigator:; Organization: Case Western Reserve University; NSF Organization: SES Start Date: 07/01/2016; Award Amount: $66,066.00; Reference: 47.63;</td>
</tr>
<tr>
<td>Observing the Invisible: A Collaborative Investigation between Astrophysicists and Philosophers</td>
<td>Award Number: 1597138; Principal Investigator: Michael Weisberg; Co-Principal Investigator: Barry Madore; Organization: University of Pennsylvania; NSF Organization: SES Start Date: 07/01/2016; Award Amount: $134,876.00; Reference: 47.63;</td>
</tr>
<tr>
<td>Collaborative Research (RUI): Search for Exotic Transient Spin-dependent Signals from Ultralight Dark Matter Fields</td>
<td>Award Number: 1707872; Principal Investigator: Derek Kimball; Co-Principal Investigator:; Organization: California State University, East Bay Foundation, Inc.; NSF Organization: PHY Start Date: 08/15/2017; Award Amount: $622,873.00; Reference: 47.63;</td>
</tr>
<tr>
<td>Collaborative Research (RUI): Search for Exotic Transient Spin-dependent Signals from Ultralight Dark Matter Fields</td>
<td>Award Number: 1707803; Principal Investigator: Jason Staneck; Co-Principal Investigator:; Organization: Oregon State University; NSF Organization: PHY Start Date: 08/15/2017; Award Amount: $91,435.00; Reference: 47.63;</td>
</tr>
<tr>
<td>Collaborative Research: ADMI-HF Extreme Axion Experiment</td>
<td>Award Number: 1607223; Principal Investigator: Konrad Lehnert; Co-Principal Investigator:; Organization: University of Colorado at Boulder; NSF Organization: PHY Start Date: 07/01/2016; Award Amount: $276,929.00; Reference: 47.63;</td>
</tr>
<tr>
<td>Experiments Meet: Radio and Gamma-Ray Observations of Clusters of Galaxies, from Dark Matter to Cosmic Rays</td>
<td>Award Number: 1117545; Principal Investigator: Tasa Jeltema; Co-Principal Investigator: Stefano Profumo; Organization: University of California-Santa Cruz; NSF Organization: AST Start Date: 09/01/2015; Award Amount: $325,000.00; Reference: 47.63;</td>
</tr>
</tbody>
</table>
Division that made the award.

Program Director currently managing the award.

Funds allocated to date. See ‘expired’ awards for standard level of investment per award.

Program(s) that funded this award.

Abstract for this award – reviewing abstracts provides information on research scope of the program – does your research fit?

A galaxy contains a mixture of gas, stars and dark matter. The gas and stars emit light, making them easy to study. But the dark matter is, well, dark: it does not emit light; so, it is difficult to study. Theories of galaxy formation try to account for the mixtures of gas, stars and dark matter in galaxies of all types. Recently, a new type of galaxy was discovered, the so-called ultra-diffuse galaxies (UDGs). These galaxies contain dark
Now you want to begin writing.

- What are the rules?
- Is there guidance as to what is expected?

In general, your proposal must comply with two sets of rules/expectations:

- Those listed in the **PAPPG** (minimal NSF-wide expectations/requirements)
- Those listed in the **Solicitation** (specific to program, may supplement or override the PAPPG).
Proposal & Award Policies & Procedures Guide

(see link within Fastlane under “Proposals, Awards, Status”)

(PAPPG) NSF 17-1

- Contains guidelines for all proposals (except when program Solicitation stipulates otherwise)
- Also provides guidance for Award process, from issuance and administration through closeout
- Also describes NSF organizations and offices most relevant to grantees
- Also provides a list of Statutes and Executive Orders
- Is updated often: make sure you are looking at the most current edition!
The Solicitation

In Program Announcement/Solicitation, look for:

- Goal of Program
- Eligibility
- Special proposal preparation and/or award requirements
- Deadlines/Target dates/ Submission windows
- Pre/Full proposal

In case of a conflict between the PAPPG and the Solicitation, the Solicitation overrides the PAPPG.
Parts of an NSF Proposal

- Project Summary and Project Description --- each must explicitly and separately address **Intellectual Merit** and **Broader Impact**
- Project Description -- also include Results from Prior NSF support
- References -- All Authors, Titles of Articles
- Biographical Sketch
- Budget -- your declaration about what you need to complete the proposed research (including overhead, etc.) --- consult with your SRO
- Current and Pending Support declaration
- Post Doc Mentoring Plan – if needed, one page in Supplementary Docs
- Data Maintenance Plan – two pages in Supplementary Docs
- Collaborator & Affiliations List – Single-Copy Document; special format
- Others as needed… see PAPPG

Non-conforming proposals may be returned without review!!!
Things to consider while writing

- **Why this research project?**
- **Why you and not someone else?**
 - Uniqueness of research, educational opportunities, available facilities...
- **What are your strengths?**
 - Capture the reviewers’ attention in the Summary and Introduction. Make them want to read more.
- **YOU must convince the reviewer you are worthy of funding**
- **Express yourself clearly**
 - It’s not the reviewer’s job to figure out what you are trying to accomplish and why. Good expository writing is key!
Before Your Submit Your Proposal

• Get someone else (with experience) to read the proposal, and leave your ego behind!

• Don’t wait until the deadline to submit (and ask your SRO how much time they will need in advance).

• Upload, then download and Print the PDF file after finishing and double-check the font size, diagrams, etc.
NSF-funded Projects are expected to be of the highest intellectual quality with the potential to advance, if not transform, the frontiers of knowledge.

Projects are also expected to contribute more broadly to achieving societal goals, either through the research itself or through activities related or complementary to the research.

Two Merit Review criteria are considered when evaluating ALL NSF proposals:

- **Intellectual Merit**: the potential to advance knowledge
- **Broader Impacts**: the potential to benefit society and contribute to the achievement of specific, desired societal outcomes
Intellectual Merit

For example...

• How important is the proposed activity to advancing knowledge and understanding within its own field or across different fields?
• How well qualified is the proposer (individual or team) to conduct the project?
• To what extent does the proposed activity suggest and explore creative, original, or potentially transformative concepts?
• How well conceived and organized is the proposed activity?
• Is there sufficient access to resources?
Broader Impacts

For example...

- How well does the activity advance discovery and understanding while promoting teaching, training, and learning?
- How well does the proposed activity broaden the participation of underrepresented groups?
- To what extent will it enhance the infrastructure for research and education, such as facilities, instrumentation, networks, and partnerships?

- Will the results be disseminated broadly to enhance scientific and technological understanding?
- What may be the benefits of the proposed activity to society?
Broader Impacts

NSF Broader Impacts are (intentionally) broadly defined. Examples include, but are *not limited to*:

- improved STEM education and educator development at any level;
- increased public scientific literacy and public engagement with science and technology;
- full participation of women, persons with disabilities, and underrepresented minorities in science, technology, engineering, and mathematics (STEM);
- improved well-being of individuals in society;
- development of a diverse, globally competitive STEM workforce;
- increased partnerships between academia, industry, and others;
- improved national security;
- increased economic competitiveness of the United States;
- enhanced infrastructure for research and education.
How Proposals become Grants

• Proposals are evaluated by combination of
 – **External ("ad-hoc") reviews:** Program Director selects experts from relevant scientific community to evaluate proposal on its *intrinsic* merits and supply written review and overall score
 – **Panel evaluation:** Program Director convenes Panel of experts from community to evaluate proposal and compare it with competing proposals in order to develop recommended relative rankings. Panel ultimately writes Panel Summary outlining their recommendation and why.

• Within the constraints of available funding, **Program Director** then makes “final” decisions: which proposals and at what funding levels? Funding levels might be negotiated with PI as needed.

• **Division Director** then “concurs”, giving final scientific approval. If funding recommended, NSF’s **Division of Grants and Agreements** then gives final overall approval establishes the new grant.

Congratulations!
Along with the advice provided by reviewers/Panels, NSF staff give careful consideration to the following in making funding decisions:

Integration of Research and Education

One of the principal strategies in support of NSF's goals is to foster integration of research and education through the programs, projects, and activities it supports at academic and research institutions…

Integrating Diversity into NSF Programs, Projects, and Activities

Broadening opportunities and enabling the participation of all citizens, women and men, underrepresented minorities, and persons with disabilities, are essential to the health and vitality of science and engineering. NSF is committed to this principle of diversity and deems it central to the programs, projects, and activities it considers and supports.
Each Division has its own programs to which you can submit a proposal.

However, there are several important Solicitations which cut across NSF....
RUI: Facilitating Research at Primarily Undergraduate Institutions

- RUI proposals from eligible institutions must be submitted in response to existing NSF funding opportunities and must abide by guidelines and deadlines in those documents.

- Current RUI solicitation is NSF 14-579. You submit here and designate which Program should receive your proposal. RUI solicitation has extra requirements beyond the regular Program Solicitations and PAPPG.

There is no single Foundation-wide deadline for RUI proposals – see Division programs.
MPS AGEP GR Supplements

• Available to PIs to support qualifying graduate students at AGEP or AGEP Legacy Institutions only!
 https://www.nsf.gov/mps/broadening_participation/index.jsp

• Graduate Student Eligibility
 – Emphasis placed on under-represented groups
 – Not currently supported by federal government (NSF, DOE, NIH,…)
 – US Citizen, US National, or US Permanent Resident

• Stipend, tuition, benefits, and IDC (~$60k). Renewable up to two times.

See DCL 16-125 for more information
CAREER

Faculty Early Career Development Program
NSF 17-537

See previous presentation by Kathy McCloud.

Important points to bear in mind...

• Not a research excellence prize!
• Not intended as a default proposal mechanism for new Assistant Professors.
• Has a specialized purpose which may not be suitable for all PI’s.
Division of Physics (PHY)

Keith R. Dienes
kdienes@nsf.gov
The Physics Division –
A Broad, Rich and Diverse Research Portfolio

Hot – Active Galactic Nuclei Produce High Energy Cosmic Rays in Pierre Auger Observatory

Cold – Ultracold Molecules at JILA

Large – Nucleosynthesis in Accreting White Dwarfs at JINA

Small – Inspirals Produce Space-Time Distortion Less than Diameter of Proton in LIGO

Living – Brain Wave Images with Diffusion MRI

Non-Living – Proton-Proton Collisions at CERN

Old – Big-Bang Soup Recreated in Quark-Gluon Plasma at RHIC

New – Quantum Network at CalTech
Division of Physics

Facilities
- Large Hadron Collider
- IceCube
- LIGO
- NSCL

Experiment
- Atomic, Molecular, Optical
- Elementary Particle Physics
- Particle Astrophysics
- Gravitational Physics
- Nuclear Physics
- Physics of Living Systems
- Accelerator Science
- Plasma Physics
- LIGO Research Support

Theory
- Atomic, Molecular, and Optical
- Elementary Particle Physics
- Astrophysics and Cosmology
- Gravitational Physics
- Nuclear Physics
- Nuclear Astrophysics
- Physics of Living Systems
- Accelerator Science
- Plasma Physics

Cross-cutting
- Physics Frontier Centers
- Integrative Activities in Physics
- Computational Physics
- Quantum Information Science

Note: Condensed-Matter Physics is within DMR, not PHY!
World Class Major Facilities
Keeping Researchers at the Frontier

LHC
NSCL
LIGO

IceCube at the South Pole
Program Solicitation:
Investigator-Initiated Research Projects (17-561)

Be aware:

• New requirements for some PI’s!
• Does not override existing solicitations such as RUI, CAREER, REU sites, etc.
• Deadlines instead of target dates!
• Separate deadlines for different Physics programs
Division of Physics

Full Proposal Deadlines (due by 5 p.m. submitter's local time):

October 25, 2017:
- Atomic, Molecular & Optical Physics - Experiment & Theory;
- Elementary Particle Physics - Experiment;
- Gravitational Physics - Experiment & Theory;
- Integrative Activities in Physics;
- LIGO Research Support;
- Particle Astrophysics - Experiment;
- Physics of Living Systems

November 8, 2017: Nuclear Physics - Experiment and Theory

December 7, 2017:
- Elementary Particle Physics - Theory;
- Particle Astrophysics and Cosmology - Theory;
- Quantum Information Science

December 6, 2018: Computational Physics
Changes to note:

- (for all Divisions:) Collaborators and Other Affiliations is now a Single-Copy Document (not sent to reviewers, seen by NSF only)
- There are restrictions on the allowed content in *Letters of Collaboration* or *Membership in large collaborations*

PI’s with **concurrent sources of support:**
- Explain how the proposed work is distinct from other funded activities.
- Discuss commitments (such as deliverables, specific projects, percentage of total research effort, etc.) associated with other support
- Put in the **Current/Pending Support** section… *item for peer review.*

Additional Information for Midscale Instrumentation:
For proposals to support instrumentation acquisition or development at the level of $4 million and above. This language may also apply to requests for lesser amounts if the cognizant Program Director concludes that the complexity of the instrumentation merits this approach. **Investigators should first contact the Program Director for their physics subdiscipline.** Proposals should be submitted to the appropriate PHY Program (not a separate solicitation.)
Division of Astronomy (AST)

Hans Krimm
hkrimm@nsf.gov
Individual Investigators (Lead: James Neff)
- AAG
- SPG
- CAREER
- AAPF

Mid-scale (Lead: Rich Barvainis)
- MSIP

Facilities (Lead: Ralph Gaume)
- ALMA
- NRAO
- Gemini
- NOAO
- NSO
- Arecibo
- LSST

Research
- Astronomy and Astrophysics Research Grants
- Solar and Planetary Research Grants

Advanced Technologies and Instrumentation Technology/
Instrumentation
- Major Research Instrumentation

Education and Special Programs
- Early Career Faculty
- Postdocs
Astronomy and Astrophysics Research Grants (AAG)

Solar and Planetary Research Grants (SPG)

Annual AAG deadline: November 15

(no deadline for SPG)

• Research grants for observational, theoretical, laboratory, and archival data studies in all areas of astrophysics
• Also support programs that enable new research capabilities
• Proposals may span multiple disciplines and/or areas of study and may utilize multiple techniques.
From 2000 to 2008, AAG funding doubled, but the funding rate went down by 1/3. It’s essentially level ever since.
IIP Update

- *No Proposal Deadline* pilot underway for the Planetary/Exoplanetary and Solar portions of AAG
- MSIP solicitation has been released for FY2018.
- ATI deadline postponed. Program review in progress.
- PAARE deadline postponed. Program review in progress.
- New MRI solicitation expected for FY2018.
AAG/SPG Overview

- SPG = Solar and Planetary Research Grants (no deadline pilot)
- An award is made to an institution: university, observatory, center (like CfA), NOT directly to another federal agency (like NASA).
- Typical awards are 3 years, ~$400K including institutional indirect
- Usual budget is for salary (grad student, postdoc, faculty summer (<= 2 mos), ”soft money” academic year), travel, publication costs.

AAG/SPG program overview:
Observational, theoretical or laboratory
Stellar, planetary, extraplanets, galactic, extragalactic or cosmology
Proposals that are solely or predominantly for the acquisition, analysis, or interpretation of space-based data from NASA-supported missions will be returned without review.
Our Facilities

ALMA

Arecibo

LSST

Gemini

DKIST

Anyone may propose for observing time on NSF AST-funded facilities
Division of Materials Research (DMR)

Leonard Spinu
lspinu@nsf.gov
NSF Division of Materials Research (DMR)
DMR Budget Distribution

- Topical Materials Research Programs & DMREF: 40%
- MRSEC & PREM: 19%
- National Facilities & Instrumentation: 18%
- CAREER: 8%
- REU sites: 2%
- Science and Technology Centers: 2%
- Other: 12%

FY15: $307M
FY16: $310M
FY17: $314M
FY18R: $283M

Where Materials Begin & Society Benefits
DMR Solicitations for “Unsolicited” Proposals for TMRP

Biomaterials (BMAT)
Electronic & Photonic Materials (EPM)
Metals and Metallic Nanostructures (MMN)
Polymers (POL)
Condensed Matter Physics (CMP)
Solid State and Materials Chemistry (SSMC)

Ceramics (CER)

PROGRAM SOLICITATION
NSF 16-597

REPLACES DOCUMENT(S):
PD 15-1774

Condensed Matter and Materials Theory (CMMT)

PROGRAM SOLICITATION
NSF 16-596

REPLACES DOCUMENT(S):
PD 09-1765

Division of Materials Research: Topical Materials Research Programs (DMR-TMRP)

PROGRAM SOLICITATION
NSF 17-580

REPLACES DOCUMENT(S):
PD 03-1710, PD 03-1773, PD 03-1775, PD 06-7623, PD 09-1771, PD 10-1762

Submission Deadline: Nov 1

Open Window – No Deadlines

Where Materials Begin & Society Benefits
National Facilities & Instrumentation

Cornell High Energy Synchrotron Source (Cornell, Ithaca)

Center for High Resolution Neutron Scattering (NIST, MD)

National Nanotechnology Coordinated Infrastructure
http://nnci.net/about-nnci

National High Magnetic Field Facility (Florida)

Where Materials Begin & Society Benefits
Materials Innovation Platforms (MIP)

MIP Concept: Combine a **focused research effort** in an interactive feedback loop together with a **mid-scale user facility open to the community** in order to accelerate advancement of a materials research topic of national importance.

2D Crystal Consortium

NSF Materials Innovation Platform

www.mip.psu.edu

Focus: 2-dimensional chalcogenide materials for future electronics
- e.g., Can theory model growth kinetics and guide materials synthesis?

Focus: interfacial materials, combining oxides & 2D materials, for valleytronics & spintronics
- e.g., Can we design and create new interfacial materials by “breaking” Gibbs’ & Pauling’s rules?

Current Status:
- Accept user proposals; some samples delivered to users already
- World’s first 300-atm floating-zone furnace at Paradim-JHU
- Integrated MBE, CVD, ARPES & STM/AFM later in 2017
- Access to computational, TEM & other capabilities
- Webinars and summer schools
Instrumentation

- Major Research Instrumentation (MRI)
- Divisional instrumentation programs
- Research grants
Next Deadline: January 2018 (New Solicitation expected)

Restrictions on organization submission eligibility

Submission limit - Three (3) per organization: If three proposals are submitted, at least one of the proposals must be for instrument development.

Awards - up to $4M for development or acquisition proposals

Cost-sharing at the level of 30% of the total project cost is required for Ph.D.-granting institutions and non-degree-granting organizations. Cost-sharing is not required for non-Ph.D. granting institutions.

Merit Review - At the time of submission, PI’s are asked to identify an NSF division(s) to review proposal. NSF reserves the right to place proposals in the appropriate division(s) for review.
Questions?

Ask Early, Ask Often
(starting now!)

PHY: Keith R. Dienes, kdienes@nsf.gov
AST: Hans Krimm, hkrimmel@nsf.gov
DMR: Leonard Spinu, lspinnu@nsf.gov
Backup Slides
Outline

NSF Overview (Jim N)

Division of Astronomical Sciences (Jim N)
Division of Physics (Jim W)
Division of Materials Research (Tess)

Major Research Instrumentation Program (Tess)
RUI (Tess)
MPS AGEP GR Supplements (Tess)
CAREER Proposals (Tess)

Merit Review Criteria (Jim W)
Funding opportunities overview (Jim W)
Major NSF leadership transition in Jan/Feb
Acting ADs for MPS, GEO, ENG, and EHR
New Acting Chief Operating Officer
GEO AD started on June 1; ENG AD will start on June 19.
NSF FY 2018 Budget Request
Total: $6.65 billion
MPS Funding
(Dollars in Millions)

<table>
<thead>
<tr>
<th></th>
<th>FY 2016 Actual</th>
<th>FY 2017 (TBD)</th>
<th>FY 2018 Request</th>
<th>Change Over FY 2016 Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amount</td>
</tr>
<tr>
<td>Astronomical Sciences (AST)</td>
<td>$246.63</td>
<td>-</td>
<td>$221.15</td>
<td>-25.48</td>
</tr>
<tr>
<td>Chemistry (CHE)</td>
<td>246.52</td>
<td>-</td>
<td>221.05</td>
<td>-25.47</td>
</tr>
<tr>
<td>Materials Research (DMR)</td>
<td>309.88</td>
<td>-</td>
<td>282.87</td>
<td>-27.01</td>
</tr>
<tr>
<td>Mathematical Sciences (DMS)</td>
<td>233.95</td>
<td>-</td>
<td>209.78</td>
<td>-24.17</td>
</tr>
<tr>
<td>Physics (PHY)</td>
<td>276.91</td>
<td>-</td>
<td>253.30</td>
<td>-23.61</td>
</tr>
<tr>
<td>Office of Multidisciplinary Activities (OMA)</td>
<td>34.89</td>
<td>-</td>
<td>31.28</td>
<td>-3.61</td>
</tr>
<tr>
<td>Total</td>
<td>$1,348.78</td>
<td>-</td>
<td>$1,219.43</td>
<td>-$129.35</td>
</tr>
</tbody>
</table>

National Science Foundation
Principles Applied to MPS

• Support early career
 • CAREER request relatively stable. Targeted REU reductions if undergraduate students could be supported through national facilities and normal research awards. 8,000 graduate students to be supported through research awards.

• Protect the core; cross disciplinary programs
 • Major research facilities are “core” to MPS.
 • Retained flexibility to fund the best science by rolling some cross-disciplinary programs into core programs.

• Strategic and prioritized reductions within directorates
 • Emphasized funding of highest priority facilities; reductions proposed for some facilities in transition.
 • Reduced mid-scale and instrumentation; support individual investigators.
 • Prioritized low-level investments leading to “Big Ideas”.
CAREER

ELIGIBILITY: As of Directorate Deadline

• Hold a doctoral degree by the deadline date in a field supported by NSF;
• Be untenured until October 1 following the deadline; and
• Have not previously received a CAREER award (prior or concurrent Federal support for other types of awards or for non-duplicative research does not preclude eligibility);

AND

• By October 1st following the deadline for submission of CAREER proposals: Be employed in a tenure-track (or tenure-track-equivalent) position as an assistant professor (or equivalent title) at an accredited institution located in the U.S., its territories, or possessions, or the Commonwealth of Puerto Rico, that awards degrees in a field supported by NSF;

OR

• Be employed in a tenure-track position (or tenure-track-equivalent position) as an assistant professor (or equivalent title) at an organization located in the U.S., its territories or possessions, or the Commonwealth of Puerto Rico, that is a non-profit, non-degree-granting organization such as a museum, observatory, or research lab.
CAREER Program

Awardees are selected based on their plan of outstanding research, excellent education, and the integration of research and education within the context of the mission of their organizations, building a firm foundation for a lifetime of leadership.

Increased participation of those traditionally under-represented in science and engineering is encouraged.

FY2016