Physics education research at RIT

Faculty
Ben Zwickl
Yasemin Kalender
Casey Miller
Scott Franklin

Grad/Postdoc
Dina Zohrabi Alaee (pd)
Mike Verostek (g)

Undergrads
Diana Ryder
Ridge Bennett
Rebecca Verchimak
Erik Pearson
Mark Flores
Keegan Tonry
Kayleigh Patterson
Mikayla McIntyre
Brandon Wright
Philip Reutter

REU program in STEM education research
Objective for this session

- Identify lab learning goals and which may be most suitable for your context
- Identify and describe pedagogical decisions that align with your goals
- Identify tensions and tradeoffs in lab education
Getting to know each other
What lab classes are you teaching or will teach?

- Algebra-based physics labs
- Calc-based physics labs (e.g., for engineers)
- Physics for life sciences
- Beyond first year labs (modern, optics, advanced, ...)
- Anything else?
What is the format of your lab courses?

- Standalone lab courses, not connected to a lecture
- Lab and lecture are separate, but synchronized
- Integrated lecture and lab (studio, workshop, ISLE, modeling instruction)
A scenario
Consider the following scenario

A penny pinching administrator doubts the value of lab courses.

- Labs suck up a lot of resources (instructors, equipment, space)
- Do they really help students learn better?
- Simulations are more “efficient” than real experiments
- The labs aren’t super popular with students anyway.

Why not replace labs with online simulations?

Discuss with your neighbor for 3 minutes
How would you respond? Are any of the concerns legitimate?
Teaching labs in a theory-centric curriculum
Are you ready to be liberated from the tyranny of the lecture?
40 credits of lecture/theory

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Physics I: Physics Majors</td>
<td>3</td>
</tr>
<tr>
<td>Special Relativity</td>
<td>3</td>
</tr>
<tr>
<td>University Physics I: Physics Majors</td>
<td>3</td>
</tr>
<tr>
<td>Sophomore seminar</td>
<td>1</td>
</tr>
<tr>
<td>Vibrations and Waves</td>
<td>3</td>
</tr>
<tr>
<td>Mathematical Methods in Physics</td>
<td>3</td>
</tr>
<tr>
<td>Classical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>Modern Physics I</td>
<td>3</td>
</tr>
<tr>
<td>Modern Physics II</td>
<td>3</td>
</tr>
<tr>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Thermal and Statistical Physics</td>
<td>3</td>
</tr>
<tr>
<td>Physics Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

17 credits of lab

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Physics Lab</td>
<td>2</td>
</tr>
<tr>
<td>Electronic Measurements</td>
<td>3</td>
</tr>
<tr>
<td>Experiments in Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Computational Physics</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Lab</td>
<td>3</td>
</tr>
<tr>
<td>Physics lab elective</td>
<td>3</td>
</tr>
</tbody>
</table>

You will probably feel that you have a lot to cram into a small number of lab courses

That feeling is normal.
Gatekeepers are theory-centric

Intro physics exams, not labs, cause students to fail.

Graduate School Admissions - GRE Physics Exam
 - only addresses short theoretical questions

Progress in physics (undergrad and grad-level) heavily favors theory performance

Yet professional success involves computation, hands-on lab, open-ended designs, collaboration.
Is physics identity theory-centric?

Physics celebrities are generally theorists and astronomers.

Labs offer a different way to be a “good” physicist.
Is physics identity theory-centric?

- Physics celebrities are generally theorists and astronomers.

- Most academic recognition is for theory, not lab, performance.

Labs offer a different way to be a “good” physicist.

Labs support career training

- Labs can provide relevant training for research and engineering
 - Technical skills
 - Computational modeling
 - Data analysis
 - Oral and written communication
 - Documentation
Think back to when you were a student...

Share with a neighbor (1 minute)

What words come to mind when thinking about your own lab experiences as an undergraduate?
Responses from 10 seniors and grad students

What words come to mind when thinking about your own lab experiences as an undergraduate?

None of these students were doing experimental research
Purposes and goals of labs
Broad categories of goals for labs

Skill and knowledge goals
● Reinforcing theoretical concepts
● Learning scientific practices
 ○ Data analysis, experimental design, presentation of results, etc.
● Developing scientific habits of mind
 ○ “nothing works the first time”

Psychosocial goals
● Positive affect and interest toward experimental work
● Self-confidence at lab work
● Sense of belonging in physics, identify as a “physics person”
Why do the psycho-social factors matter?

Learning experiences (lab courses) → Self-efficacy (confidence) → Outcome expectations (what is lab work like?) → Interest → Career decisions (stay in physics, pursue lab work)

Labs provide an alternative way to be recognized as successful and to belong to the physics community.

Lent et al (1994) J. Vocational Behavior
AAPT Recommendations emphasize scientific practices and habits of mind. They move focus away from conceptual learning.
Discussion about Learning Goals

Organize into groups of 2-4
Introductory labs – general
Introductory labs – for life science majors
Labs beyond the introductory labs

Activity (5 minutes)
• What are dominant goals of the your current labs?
• Are there any goals you think should be added to the course?
Aligning goals and assessments
Lab reports

Traditionally, lab reports have been a primary assessment in lab courses.

Discuss 1-2 minutes with your neighbor

- What goals are lab reports aligned with?
- What goals might be missed?
Unintended consequences of lab reports

1. Writing becomes strong(est) emphasis in lab
2. Grade largely depends on out-of-lab work
 a. Incentivizes getting out of lab quickly to have more time to write it up later.
3. Does not capture the “process” or “practice” learning goals
4. Generally, not a communicative. The “correct” results are already known by instructor.
What other kinds of assessment formats are possible?

<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criteria 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criteria 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rubrics

Lab practical

Worksheets

Lab skills

Content knowledge

Focus on alignment between goals and assessment

Student A measures the flow rate of water coming from a tap and reports it to be \((90 \pm 12)\) millilitres per second. Student B follows a different measurement procedure and reports the flow rate to be \((110 \pm 1)\) millilitres per second. How long would it take to fill a 1 litre container?

(a) 10.0 s
(b) 9.1 s
(c) 11.1 s
(d) 9.5 s
(e) 10.6 s
What other kinds of assessments are possible?

Beyond lab reports, what other assessment could be used in the lab?

- What have you used?
- What creative ideas might you have?
What do labs actually teach?
(a little bit of PER)
What are the 2 most important outcomes for your labs?

- Students' identity as a physicist
- Conceptual learning
- Enjoyment of physics
- Problem-solving ability
- Beliefs about the nature of science
- Experimental skills and practices
- Confidence in doing experiments
Most labs don’t improve conceptual learning

Labs that focus on conceptual understanding don’t improve exam performance.

Most labs don’t improve conceptual learning

<table>
<thead>
<tr>
<th></th>
<th>Midterm 1</th>
<th>Midterm 2</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design labs</td>
<td>96.0</td>
<td>104.7</td>
<td>174.9</td>
</tr>
<tr>
<td>(strong focus on scientific practices)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-design labs</td>
<td>97.8</td>
<td>98.4</td>
<td>170.8</td>
</tr>
<tr>
<td>(no focus on design)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Labs that focus on scientific abilities (e.g., experimental design) don’t negatively impact exam performance.

You can do something totally wacky in labs and not affect exam scores.

Etkina et al., (2010) *Journal of the Learning Sciences*
Some labs (especially in integrated lecture lab) can improve conceptual learning.

Example of RealTime Physics curriculum

These labs were designed to address common student difficulties and promote conceptual change.
Labs can teach scientific abilities/practices

- More time sense-making in labs focused on scientific abilities
- Lab reports document higher levels of student reasoning

Etkina et al., (2010) *Journal of the Learning Sciences*
Labs can shift learning attitudes

Data from the E-CLASS survey

Labs that focus on concepts may
● Verify a phenomenon

Labs that focus on skills may
● Provide more agency to make decisions
Labs may send wrong message about experiments

Why are experiments a common part of physics classes?

<table>
<thead>
<tr>
<th>Intro Algebra</th>
<th>Intro calculus</th>
<th>Upper</th>
<th>Ph.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=75</td>
<td>N=28</td>
<td>N=20</td>
<td>N=31</td>
</tr>
</tbody>
</table>

Supplemental learning
Theory testing
Foundation of physics
Scientific abilities
Science appreciation
Career Preparation

Labs may send wrong message about experiments

Why are experiments a common part of physics classes?

<table>
<thead>
<tr>
<th></th>
<th>Intro Algebra N=75</th>
<th>Intro calculus N=28</th>
<th>Upper N=20</th>
<th>Ph.D. N=31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplemental learning</td>
<td>0.91</td>
<td>1.00</td>
<td>0.70</td>
<td>0.55</td>
</tr>
<tr>
<td>Theory testing</td>
<td>0.15</td>
<td>0.21</td>
<td>0.55</td>
<td>0.42</td>
</tr>
<tr>
<td>Foundation of physics</td>
<td>0.04</td>
<td>0.07</td>
<td>0.20</td>
<td>0.74</td>
</tr>
<tr>
<td>Scientific abilities</td>
<td>0.01</td>
<td>0.11</td>
<td>0.30</td>
<td>0.35</td>
</tr>
<tr>
<td>Science appreciation</td>
<td>0.01</td>
<td>0.04</td>
<td>0.10</td>
<td>0.32</td>
</tr>
<tr>
<td>Career Preparation</td>
<td>0.00</td>
<td>0.04</td>
<td>0.20</td>
<td>0.26</td>
</tr>
</tbody>
</table>

“experiments help students visualize the theories that they are learning.”

- Intro student

Labs may send wrong message about nature of scientific knowledge

How do you know if an experimental result is acceptable or trustworthy?

```
<table>
<thead>
<tr>
<th>Criteria for validity</th>
<th>Codes</th>
<th>Intro algebra</th>
<th>Intro calculus</th>
<th>Upper</th>
<th>Ph.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory-based</td>
<td>Comparison with theory</td>
<td>0.39</td>
<td>0.68</td>
<td>0.35</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Comparison with others</td>
<td>0.37</td>
<td>0.29</td>
<td>0.80</td>
<td>0.35</td>
</tr>
<tr>
<td>Results-based</td>
<td>Repeatability</td>
<td>0.15</td>
<td>0.39</td>
<td>0.25</td>
<td>0.71</td>
</tr>
<tr>
<td>Process-based</td>
<td>Uncertainty evaluation</td>
<td>0.17</td>
<td>0.25</td>
<td>0.55</td>
<td>0.32</td>
</tr>
<tr>
<td>Authority-based</td>
<td>Quality work</td>
<td>0.08</td>
<td>0.11</td>
<td>0.05</td>
<td>0.39</td>
</tr>
<tr>
<td>Authority figures</td>
<td></td>
<td>0.12</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
```

“If [the results] correspond to the theory answers. This is the best way to check if the results are acceptable.”

- Intro physics student
Verification labs may teach students to fudge data

Most students expect lab is about verifying a model or equation…

…discrepant results appeared to lead to questionable research practices
 o Selectively analyzing data
 o Ignoring contradictory results
 o Assuming equipment was faulty

Labs can teach students they aren’t good at experiments

Interviewer: “Which [type of physics] would you say is your favorite to do work in?”

Student: “Anything except experimental...I know a lot of people enjoy, like, doing the physics with their hands. I'm definitely not that guy. I'd rather just see it through equations.”

Common elements of negative student experiences:

- Only exposure to experiment in lab courses (not research)
- No out-of-class practice
- No peer learning with experiments (outside of class)
- Lower self-confidence in experimental work

Cardona et al., (2021) *Proceedings of the Physics Education Research Conference*
Summary

The goals section was meant to get you excited.

The evidence for learning suggests labs often fall short.

Why do lab courses often fall short?

- nebulous goals (mostly concepts, but a hint of practices)
- absent goals (e.g., enjoyment, confidence, identity)
- curricula not aligned with relevant learning goals
Questions

Questions about evidence for laboratory learning?
Confronting the complexity of labs
Acknowledging the complexity of labs

Complex research lab environment

- Natural phenomena
- Apparatus and measurement tools
- Scientific practices
- Multiple pathways to solutions (including failure and iteration)
- Integrate theory, experimentation, and computation together.
- Collaborate with other people
- Diverse goals

Ultracold Atom Lab, Immanuel Bloch
Complex research lab environment

- Natural phenomena
- Apparatus and measurement tools
- Scientific Practices
- Multiple pathways to solutions (including failure and iteration)
- Integrating theory, experimentation, and computation together.
- Collaboration with other people
- Diverse goals

Examples of reductions of complexity

- Detailed procedures (cookbook)
- Idealized lab apparatus that matches simpler models
- Selecting lab equipment for students
- Simple data acquisition and plotting tools
- Frameworks for navigating decisions in the lab
- Focus on a small range of goals

Acknowledging the complexity of labs
Complexity: Why labs can be hard for students

- New physics ideas (e.g., force, acceleration)
 - What do these mean? How do they relate to the experiment?
- New problem-solving strategies (e.g., experimental design)
 - What makes an experimental design better or worse?
- New equipment
 - How does this work? What do the results mean? How do I use it?
Cognitive Load in Lab

Working Memory - only about 4 pieces of information can be consciously worked on in the mind

Cognitive Load - How much of the working memory capacity is used up while learning

Intrinsic Cognitive Load - challenge essential to the task

Extraneous Cognitive Load - challenge irrelevant to the task

Intrinsic load: reading graphs, identifying frequency, amplitude, trigger condition

Extraneous load: where is the info displayed? Which button do I press? What does this knob do?
Cognitive Load Example: A “simple” data table

1. Make a pendulum.

2. Collect data showing how the period changes with length and with amplitude.

A bunch of decisions need to be made:

- What goes on rows vs columns?
- How many rows and columns?
- Does the order matter?
- Do I need multiple tables, or just one?
- Should I include calculations?
- Make it on paper, in Excel, Google Sheets?
Reducing complexity and cognitive load with cookbooks

Cookbook lab
A recipe for efficient labs with accurate data
by
Lab Instructors Everywhere

Goal Accurate measurements, graph that verifies theory, finish on-time
Outcome Lab report that describes process and data
Division of Labor Instructor pre-selects equipment, students divide into “hands-on” and recorder roles

Tools Detailed procedures, idealized lab equipment

Student

Rules Follow instructions
Community Lab partner, instructor
Other ways to reduce complexity and enhance learning

- Easier-to-use equipment
- Develop proficiency through repeated practice
- Provide scaffolding (increase complexity of lab throughout semester)
- Set fewer (but still meaningful) goals
- Simpler outcomes
- Don’t focus lab on teaching concepts, target different goals.
The challenge of low motivation

- Adding relevance

Optical pulse sensor from 2nd year electronics lab for physics majors
The challenge of low motivation

- Adding relevance
- Adding curiosity
The challenge of low motivation

- Adding relevance
- Adding curiosity
- Adding agency

Color Mix-a-tron 500

Next, we do what the machines tell us to:

- Red: 17, pump for 1 seconds.
- Yellow: 143, pump for 8 seconds.
- Blue: 255, pump for 15 seconds.
Pedagogical decisions for labs
Decision 1: When to introduce scientific practices

You overhear a colleague say...

“Labs focusing on scientific practices are great, but introductory students just aren’t ready to design their own experiments.”

Take 2 minutes to discuss with your neighbor

- Do you agree or disagree?
- Should practices like experimental design or modeling be reserved for more advanced students? Or only for physics majors?
Several intro-level curricula emphasize practices

Integrated lecture-lab environments with a big focus on multiple practices.

- Investigative Science Learning Environment (ISLE)
- Modeling Instruction (HS and Intro College)

Standalone labs that emphasize practices

- Cornell “Critical Thinking” Labs
- HS Labs aligned with Next Generation Science Standards
Several intro-level curricula emphasize practices

Integrated lecture-lab environments with a big focus on multiple practices.

- Investigative Science Learning Environment (ISLE)
- Modeling Instruction (HS and Intro College)

Standalone labs that emphasize practices

- Cornell “Critical Thinking” Labs
- HS Labs aligned with Next Generation Science Standards
Scientific Abilities

- represent information in multiple ways;
- use scientific equipment to conduct experimental investigations and to gather pertinent data to investigate phenomena, to test hypotheses, or to solve practical problems;
- collect and represent data in order to find patterns, and to ask questions;
- devise multiple explanations for the patterns and to modify them in light of new data;
- evaluate the design and the results of an experiment or a solution to a problem;
- communicate.
Comparing ISLE scientific abilities vs other lab goals

- represent information in multiple ways;
- use **scientific equipment** to conduct experimental investigations and to gather pertinent data to investigate phenomena, to test hypotheses, or to solve practical problems;
- collect and **represent data** in order to find patterns, and to **ask questions**;
- devise **multiple explanations** for the patterns and to **modify** them in light of new data;
- evaluate the **design** and the results of an experiment or a solution to a problem;
- communicate.
ISLE Learning cycle unfolds over several classes

- **OBSERVATIONS**
 - Data collection

- **Possible Explanations**
 - Patterns
 - Relations

- **Assumptions**
 - Predictions

- **APPLICATIONS**
 - Revisions
 - More
 - Different
 - No
 - Yes

- **TESTING EXPERIMENTS**
 - Outcomes match predictions?

Yellow boxes indicate specific lab activities:

- Observations
- Testing
- Applications
Several sub-abilities under “design and conduct an observational experiment”

<table>
<thead>
<tr>
<th>Scientific Ability</th>
<th>Missing</th>
<th>Inadequate</th>
<th>Needs improvement</th>
<th>Adequate</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Is able to identify the phenomenon to be investigated</td>
<td>No phenomenon is mentioned.</td>
<td>The description of the phenomenon to be investigated is confusing, or it is not the phenomena of interest.</td>
<td>The description of the phenomenon is vague or incomplete.</td>
<td>The phenomenon to be investigated is clearly stated.</td>
</tr>
<tr>
<td>B2 Is able to design a reliable experiment that investigates the phenomenon</td>
<td>The experiment does not investigate the phenomenon.</td>
<td>The experiment may not yield any interesting patterns.</td>
<td>Some important aspects of the phenomenon will not be observable.</td>
<td>The experiment might yield interesting patterns relevant to the investigation of the phenomenon.</td>
</tr>
<tr>
<td>B3 Is able to decide what physical quantities are to be measured and identify independent and dependent variables</td>
<td>The physical quantities are irrelevant.</td>
<td>Only some of physical quantities are relevant.</td>
<td>The physical quantities are relevant. However, independent and dependent variables are not identified.</td>
<td>The physical quantities are relevant and independent and dependent variables are identified.</td>
</tr>
<tr>
<td>B4 Is able to describe how to use available equipment to make measurements</td>
<td>At least one of the chosen measurements cannot be made with the available equipment.</td>
<td>All chosen measurements can be made, but no details are given about how it is done.</td>
<td>All chosen measurements can be made, but the details of how it is done are vague or incomplete.</td>
<td>All chosen measurements can be made and all details of how it is done are clearly provided.</td>
</tr>
<tr>
<td>B5 Is able to describe what is observed without trying to explain, both in words and by means of a picture of the experimental setup.</td>
<td>No description is mentioned.</td>
<td>A description is incomplete. No labeled sketch is present. Or, observations are adjusted to fit expectations.</td>
<td>A description is complete, but mixed up with explanations or pattern. The sketch is present but is difficult to understand.</td>
<td>Clearly describes what happens in the experiments both verbally and with a sketch. Provides other representations when necessary (tables and graphs).</td>
</tr>
<tr>
<td>B6 Is able to identify the shortcomings in an experimental and suggest improvements</td>
<td>No attempt is made to identify any shortcomings of the experimental.</td>
<td>The shortcomings are described vaguely and no suggestions for improvements are made.</td>
<td>Not all aspects of the design are considered in terms of shortcomings or improvements.</td>
<td>All major shortcomings of the experiment are identified and reasonable suggestions for improvement are made.</td>
</tr>
<tr>
<td>B7 Is able to identify a pattern in the data</td>
<td>No attempt is made to search for a pattern</td>
<td>The pattern described is irrelevant or inconsistent with the data.</td>
<td>The pattern has minor errors or omissions. Terms proportional are used without clarity- the proportionality linear, quadratic, etc.</td>
<td>The patterns represent the relevant trend in the data. When possible, the trend is described in words.</td>
</tr>
<tr>
<td>B8 Is able to represent a pattern mathematically (if applicable)</td>
<td>No attempt is made to represent a pattern mathematically</td>
<td>The mathematical expression does not represent the trend.</td>
<td>No analysis of how well the expression agrees with the data is included, or some features of the pattern are missing.</td>
<td>The expression represents the trend completely and an analysis of how well it agrees with the data is included.</td>
</tr>
<tr>
<td>B9 Is able to devise an explanation for an observed pattern</td>
<td>No attempt is made to explain the observed pattern.</td>
<td>An explanation is vague, not testable, or contradicts the pattern.</td>
<td>An explanation contradicts previous knowledge or the reasoning is flawed.</td>
<td>A reasonable explanation is made. It is testable and it explains the observed pattern.</td>
</tr>
</tbody>
</table>

https://sites.google.com/site/scientificabilities/rubrics?authuser=0
ISLE Learning Cycle for Projectile Motion

Ball and Cart: Observational Experiment

Eugenia on Rollerblades: Observational Experiment

Galileo's Mast Experiment: Qualitative Testing Experiment

Projectile vs drop: Qualitative Testing Experiment

Projectile Motion: Quantitative Testing Experiment

 Projectile problem: Application Experiment

Every cycle starts with observations before scientific terms are introduced

Preliminary models are articulated and tested against data, refined as necessary

Models are applied to a new situation
Decision 2: What about uncertainty analysis?

Historically, a strong emphasis in lab courses

Procedural
Execute complex calculations
(error propagation with partial derivatives)

Conceptual
why is it important?
when to use it?
how to interpret it?
Curricula with a strong emphasis on uncertainty

Scientific Community Labs

Guide to Uncertainty and Measurement (GUM) Labs

Cornell PHYS 1110 Labs

Full semester learning progression on measurement and uncertainty as primary goal.

Full semester learning progression. Bayesian approach to uncertainty, emphasizes probability distributions

Uncertainty used to evaluate goodness of fit of models
Tension between uncertainty and conceptual goals

- RealTime Physics
- ISLE

- Low emphasis on uncertainty
- High emphasis on physics concepts

- Scientific community labs
- GUM labs
- Natasha’s labs

- High emphasis on uncertainty
- Low emphasis on physics concepts
Decisions 3 and 4: Level of structure and discovery

- Open-ended projects (Low structure, Answer unknown)
- Guided Inquiry (High structure, Answer predefined)
- Prescriptive labs

Open-ended projects vs. Guided Inquiry
Low structure vs. High structure
Answer unknown vs. Answer predefined
Decisions 3 and 4: Level of structure and discovery

Structure
- Structure is not inherently bad.
- Structure is required for learning.
- Think more “scaffolding” students decisions than “telling students what to do”.

Discovery
- Confirmation can lead to inauthentic experimentation behaviors and affect students’ perceptions of experimental science.
Restructure: typical labs

- Provide some theoretical or procedural exposition.
- Let students make some decisions.
- Turns statements into cues, questions, or prompts.
- Have students reflect and iterate.
- Give students time (e.g., one lab over multiple weeks).

Take 10 trials.

- Decide how many trials to take.
 - Looking at your data, did you have enough trials? Too many? How do you know?

Plot your data with distance on the x-axis and counts on the y-axis.

- How should you plot your data to effectively present your results?
 - What is your independent variable? What is your dependent variable?

List any sources of error and describe what you could have done differently.

- How could you improve your measurements?
 - Implement those improvements and evaluate how the changes impact your results.

Holmes, Keep, & Wieman (2020) *Phys. Rev. PER*
Fading the scaffolding: Example from Cornell intro labs

1. **Does the period of a pendulum depend on the initial amplitude?**
 - Question given. Lots of cues for decisions. Focus on quantifying uncertainty. Second week students explore explanations for discrepancies.

2. **Do objects in flight follow a gravity-only or gravity+drag model?**

3. **How do stretchy objects behave?**
 - Question loosely defined. Students choose their own object and what they want to test. Fewer cues (reminders, really).

4. **Project lab!**
 - Students choose their own question. Very few cues.

Etkina & Van Heuvelen (2007)
Restructure: Project labs

- Time and products for brainstorming ideas.
- Draft a proposal for their project that includes justifications for what they’re going to do.
- Peer review proposals (and expert review).
- Team work contracts, mid-project feedback, and end-of-project evaluations.
- Weekly accountability assignments (e.g., lab notes).
- Deadlines for milestones.
- Presentations to others.
Questions about structure?
Discovery

Use labs with a surprising outcome

- Take advantage of model approximations and assumptions
- Pendulum, Ohm’s law on light bulbs or LEDs
Discovery

Use labs with a surprising outcome

- Take advantage of model approximations and assumptions
- Pendulum, Ohm’s law on light bulbs or LEDs

Use labs where the answer isn’t googlable

- Study things from around the house, campus, or classroom.
- Hooke’s law w/ stretchy things.
Use labs with a surprising outcome

- Take advantage of model approximations and assumptions
- Pendulum, Ohm’s law on light bulbs or LEDs

Use labs where the answer isn’t googlable

- Study things from around the house, campus, or classroom.
- Hooke’s law w/ stretchy things.

Use labs where students ask the questions (and they ask different questions)

- Project lab!
 - Again, can be highly structured!
Questions about discovery?
Decision 5: Is learning canonical content a key goal?

- Modeling Instruction
- Investigative Science Learning Environment
- RealTime Physics
RealTime Physics goals

1. Understand physics concepts
2. Direct experience with the physical world
3. Laboratory skills, especially collecting and interpreting data (graphs)
4. Reinforce topics covered in lecture
RealTime: Simplify data acquisition

- Easy, intuitive - minimal training
- Reliable - students
- Flexible - measure many things

Microcomputer-Based Labs (1980’s lingo for sensors and data-acquisition)
Guide students through predictions and tests

Activity 2-1: Pushing and Pulling a Cart

In this activity you will move a low friction cart by pushing and pulling it with your hand. You will measure the force, velocity, and acceleration. Then you will be able to look for mathematical relationships between the applied force and the velocity and acceleration, to see whether either is (are) related to the force.

1. Set up the cart, force probe, and motion detector on a smooth level surface as shown below. The cart should have a mass of about 1 kg with force probe included. Fasten additional mass to the top if necessary.
Guide students through predictions and tests

Prediction 2-1: Suppose you grasp the force probe hook and move the cart forward and backward in front of the motion detector. Do you think that either the velocity or the acceleration graph will look like the force graph? Is either of these motion quantities related to force? (That is to say, if you apply a changing force to the cart, will the velocity or acceleration change in the same way as the force?) Explain.
Collect data and reflect

Question 2-1: Does either graph—velocity or acceleration—resemble the force graph? Which one? Explain how you reached this conclusion.

Question 2-2: Based on your observations, does it appear that there is a mathematical relationship between either applied force and velocity, applied force and acceleration, both, or neither? Explain.
Uncertainty analysis not emphasized in RealTime Physics

- Sensors are precise enough to visually ignore measurement uncertainty
- The quantity of data is large (100s or 1000s of points)
- Repeated measures are less common than plotting vs time or one sensor vs another sensor.
Conclusion
The good news

Generally more flexibility for labs than lecture courses - be creative!

Amazing breadth of meaningful goals

Nothing is more satisfying that seeing students grow as scientists
The hard news

Way more to do in labs than is possible.
Can be overwhelming - decision paralysis
You will make a lot of compromises
Resource intensive - think carefully about decisions
Faculty opinions can run high - build consensus
Find community!

1. AAPT Labs Community

2. Advanced Physics Lab Association (https://advlab.org/)

3. PhysPort
Warning: Thinking too hard about labs may induce decision paralysis
Thank you!

ben.zwickl@rit.edu