

Teaching Physics with PhET simulations: Free, researched, web-based resources

Kathy Perkins

University of Colorado

Workshop Learning Goals

Be able to ...

- Explain key design features of PhET simulations, and when/why you might want to use (or not use) a PhET sim
- 2. Integrate PhET simulations into instruction in a variety of ways including in combination with specific teaching strategies (e.g. peer instruction)
- 3. Use some key research findings around simulations to guide that use in class.

Intro to PhET

Product Development

Research

Classroom

The PhET Team

Faculty, Education Researcher/Designer, K-12 Teachers, Students, Software Developers

PhET for College Physics

Total of **130 interactive sims** with **91 for college physics**Most Java and Flash → Moving to HTML5 (slowly)

Mechanics

E&M

Upper Division

Astronomy

Finding PhET

• Open-use License: Creative Commons – Attribution

Or download! (~300 MB)

http://phet.colorado.edu

Thoughts: How might PhET help your goals?

Thoughts: How might PhET help your goals?

- Play student motivated ... build their connection.
- As demos For visualization ... for ease / time management
- Stepping stone and the physical equipment ... pre-lab
- Pre-reading

Integrating PhET into Instruction

How might you use these sims in your course?

Ideas for Implementations:

- JITT
- Lecture demos
- Pre-labs
- Labs
- Homework activities
- Make-up labs with lower level students
- Extra credit homework Screenshot for solution
- Pre-reading
- In-class activity ... competition
- Passport activity

Designed for versatile use

- Pre-lecture assignment (e.g. Just-in-time-teaching)
- Interactive Lecture Demonstration
- Concept Questions and Peer Instruction
- In-class activity
- Lab or Recitation
- Homework

Use in lecture

Use in lecture:

- Lecture Demonstration / Visualization

Going beyond demos:

- Coupled with Concept Tests and Peer Instruction
- Interactive Lecture Demos
- Interactive Discussion with Predications
- Whole Class Inquiry (student-suggested experimentation)

See Teaching Resources for helpful videos:

http://phet.colorado.edu/en/teaching-resources/usingPhetInLecture

Example Concept Test

I move the zero of PE up to the starting point of the Skateboarder (skateboarder still starts from rest).

The total energy of the system is now:

- A) Zero
- B) Positive
- C) Negative
- D) Depends on the position of the skateboarder

Example Concept Test

In the circuit, what happens to the brightness of bulb 1, when bulb 2 burns out?

(When a bulb burns out, its resistance becomes infinite.)

- A) Bulb 1 gets brighter
- B) Bulb 1 gets dimmer.
- C) Its brightness remains the same.

(Hint: What happens to the current from the battery when bulb 2 burns out.)

Example Concept Test

If we increase the error bar on the date point shown, what happens to the slope of the best-fit line?

- A) It becomes more negative (line tilts CW).
- B) It becomes less negative (line tilts CCW).
- C) It does not change.

Example Concept tests

Probability Density for n=3

Which of the following are possible graphs of the **real-part** of the wave-function, $Re[\Psi(x,t)]$, at some time t?

D. B and C are both possible

Exploring floating and sinking

What change would make these blocks float?

And why?

(How many strategies can you find!)

Interactive Lecture Demo (ILD) mode

Predict how the best fit line will change if the error bars on data point A increase. (Draw your answers)

Impact on Discussion

Many More Questions and Class-led Exploration:

- 1) If you rub the sweater on the balloon will electrons transfer the other way?
- 2) Can you polarize something where the protons move?
- 3) Are there <u>any</u> situations in which the +'s move?
- 4) In an insulator, are the charges stuck?

• • •

Impact on Visualization

Common expert visualization - Wave-on-string simulation vs. Tygon tube demo

Follow-up Concept Test:

Questions about velocity of different points on the string.

Instructor vs Student Control

Use of PhET sims

Lecture

Lab

Homework

Opportunity for student scientist-like exploration

Designed to support inquiry learning

Use of PhET sims

Lecture

Lab

Homework

Opportunity for student scientist-like exploration

But, no silver bullet:

Context and Activity

critical

Do students learn if I just tell them to play with a sim?

- They can. But, better with guided inquiry / accountability.
- Large data-base of classroom-tested activities available on the PhET site.

What makes a good sim activity?

• *Minimum* instruction.

Detailed procedures inhibit student exploration.

Clear Learning Goals

Give students the *goal*, not the procedure.

In-Class activity or Lab

Worse:

Give directions on how to use the sim

• Result:

Students are nervous, reluctant to try things, ask lots of questions about sim use, as opposed to learning goals.

Better:

Provide activity and do not offer any pointers on the sim itself

• Result:

Students explore uninhibitedly, quickly find/learn all the controls, become the "owner" of the sim.

Example Activity: Masses and Springs

• 5-10 minutes of play – No instructions.

• Challenge 1:

Using data from the sim, make a graph that shows whether or not the springs obey Hooke's Law.

• Challenge 2:

What is the mass of the red weight?

• Challenge 3:

Determine the spring constant in two different ways: with your graph from (1) and with the stopwatch.

Cookbook directions (NOT effective):

- Watch me while I show you the controls.
- Measure the equilibrium extension of spring 1, for each of the 3 different known masses, and make a graph of stretch of the spring (on y-axis) vs. mass (on x-axis).
 - From this, determine the spring constant k of the spring. Recall that $F_{spring} = -kx$, where x is the stretch of the spring. Don't forget that weight is mg, where $g = 9.8 \text{ m/s}^2$.

Compare these tools:

Can PhET sims replace real equipment?

- They can, but we don't think they should.
- Meant to compliment, not replace with lab equipment.
- Sims lack real-world "dirt" effects, allow students to focus on physics concepts.

Circuit Construction Kit vs. real circuits

"When learning about the real world is better done virtually.. ", N.D. Finkelstein et al., **Phys. Rev. ST Phys. Educ. Res. 1**, 010103, 2005.

- Students who only used virtual circuits, did equally well on building real circuits.
- Better on final exam.
- Sims allow risk-free, rapid inquiry cycle.

Next Generation HTML5 Sims

- HTML5 24 sims so far, many more to come!
- Cross-platform design
- Touch and mouse interaction

Next Generation Sims: Advancing Capabilities

- > Interoperability (e.g. embedding, communication)
- > Customization (e.g. start-up configuration)
- > Data Collection (e.g. user actions, record/playback, etc)
- > Accessibility for Students with Disabilities

What would you like to see in PhET?

• Sim ideas? New features? ??

Door Prize!: You can see NEW sims in development, before they are published, at

http://www.colorad.edu/physics/phet/dev

- Suite of interactive simulations (>125)
- Physics, chemistry, math
 Expanding into biology, earth science
- Research-based and user-tested
- Free! Online or downloadable (~300 MB)
- Easy to use and incorporate in class

http://phet.colorado.edu