Research-based resources on PhysPort

Eleanor C Sayre, Sam McKagan, Adrian M Madsen

NFW November 2017

esayre@ksu.edu

🎉 PhysPort 🛛 💦

What is PhysPort?

A web resource to support physics professors in using research-based teaching and assessment in their classes

www.physport.org

PhysPort Team

AAPT American Association of Physics Teachers

Sam McKagan (*Director*) Adrian Madsen (*Assistant Director*) Lyle Barbato (*development lead*) Matt Riggsbee (*visual design*)

SUPER Kansas State University

Ellie Sayre (*Research Director*) Eugene Vasserman (*security lead*) Josh Weese (*development lead*)

Theresa Neil Design

Sandy Martinuk (*User Experience*)

Periscope Specialists

Rachel Scherr Stephanie Chasteen

got	here now.	phys	port.oi	rg	
		hing with research-based resources	Teaching Methods		Account Logout t Us Contact Us Workshops
		own as the PER User's Guide), the go ation research (PER) to support your te		f 🕒	
	eaching want to find a new teaching method get implementation help learn more about research- based teaching	Assessment I want to interpret assessment results assess the impact of reforms assess advanced physics content or skills	Troubleshooting I need help with • covering enough material • supporting group work • arguments for skeptical colleagues	NEW - PhysPort C	Vata Explorer Breakdown by topic values for Engineers Fall 2013 BEMA Normalized Gain Madr: 0.33 Moder: 0.33 Moder: 0.33 Moder: 0.33 Moder: 0.33 Moder: 0.33 Moder: 0.33 Ref 4.33 Ref 4.
Ins	ere can I find goo truction? am McKagan, PhysPort direct		th clickers or Peer 6 September 26, 2016		essment data

Expert Recommendations

physport.org/recommendations

Friendly articles that interpret and synthesize PER results for physics faculty.

Real questions. Research-based answers. Faculty-centered resources.

Have a suggestion?

Want to contribute?

esayre@ksu.edu

smckagan@aapt.org

PhysPort.org Eleanor Sayre, esayre@ksu.edu

7

Teaching Methods

physport.org/methods/

How do I know which way to teach?

Supporting physics teaching with research-based resources Admin My Account Logout About Us Contact Us					
Home	Expert Recommendations	Teaching Methods	Assessments	Workshops	
eaching Methods and Materials					
	Tell us about yo	ur course to find methods r	elevant to you .		
Any Subject	\$ Any Level	¢ Any Se	etting \$		
Submit					
Student Skills Develop	55 Research-E	Based Methods	83 13	Sort by: Popularity	
Conceptual underst Problem-solving ski Lab skills Making real-world connections		eer Instruction all group discussion of conceptual of gagement and providing formative for		S res, increasing	
 Using multiple representations Designing experime 	nts Subject	Level		Setting	
 Building models Metacognition 	/* / +7		GS 0 5 X 🗭	11 A	
Instructor Effort Requi		ET Interactive Simulatio	ne		

2

- Type of method
- Level & Setting
- Coverage & Topics
- Instructor Effort
- Research validation
- Compatible methods
- Similar methods
- More information

Open Source Physics

www.compadre.org/osp/

SIMULATIONS EJS MODELING	Computational Resources for Tea		Newest OSP Materials parallel
EJS MODELING CURRICULUM PROGRAMMING TOOLS	The OSP Collection provides curricul physics, computation, and computer n computer modeling provide students v explain, and predict physical phenome learn more about our tools and curricu	nodeling. Computational physics and with new ways to understand, describe, ena. Browse the <u>OSP simulations</u> or	May <u>Physlet® Waves a</u> 26 <u>Oscillations Proble</u> SESSION <u>Package</u> May <u>Physlet® Physics</u> 24 <u>Periodic Motion</u>
JS/HTML MATERIALS BROWSE MATERIALS RELATED SITES DISCUSSION ABOUT OSP	Tracker The Tracker tool extends traditional video analysis by enabling users to create particle models based on Newton's laws. Because models synchronize with and draw themselves right on videos of real- world objects, students can test models experimentally by direct visual inspection. Learn more about Tracker	EJS Modeling Student modeling, the guided exploration of physical systems and concepts, is a powerful approach to engaged learning. Easy Java Simulations provides the computational tools for students and faculty to explore physics without the need for learning details of java programming. Learn more about EJS	Problems JS Package May Solar and Lunar 13 Eclipse JS Model Apr 24 Celestial Sphere with Analemma JS Model Recently Updated Materials Jun 10 STP Textbook Chapter 9: Critical Phenomena
Science SPORE Prize November 2011	Featured Tracker Package	Programming Open Source Physics provides extensive resources for computational physics and physics simulations. Included are:	Jun 10 <u>STP Textbook Errata</u> <u>supplement</u> May 8 <u>Two-Body Orbits JS</u> <u>Model</u> Mar 20 <u>Open Source Physics</u> <u>Users Guide</u> <u>supplement</u>

Advanced Labs

www.compadre.org/advlabs/

Filing cabinet

Bruce, ComPADRE Dir's Shared Folders

- 🖴 New Faculty Workshop - Digital Libraries

۷

New Faculty Workshop - Digital Libraries (4 resources, <u>10 subfolders</u>) This folder contains materials for participants in the the New Faculty Workshop. These materials are updated for each workshop, with new highlights added from time to time.

The folders below sort the content by subject and type.

bit.ly/compadre-nfw

NFW collection Make your own collections!

Assessment Resources

physport.org/assessments

How do I know if my students are learning?

) rt teaching with research-based res	ources	Admir	N My Account Logout About Us Contact Us
Home	Expert Recommendations	Teaching Methods	Assessments	Workshops
Browse Asse		r course to find assessment	s relevant to you .	
A	ny Subject 4	Any Level	¢ Subr	nit
Assessment Focus Any Content knowledge Problem-solving Scientific reasoning Lab skills Beliefs / Attitudes Interactive teaching	For Ma	Based Assessments Drce Concept Inventory echanics Content knowledge (for wels: Intro college, High school rmats: Pre/post, Multiple-choice		Sort by: Research validatior \$
Format Any Pre/post ? Multiple-choice Multiple-response ?		olorado Learning Attitud urvey (CLASS) ellefs / Attitudes (epistemological wels: Upper-level, Intermediate, Intr irmats: Pra/post, Multiple-choice, Ag	beliefs) o college, High school	ጅ 🔶 () 8-10 min
Short answer Rubric ?		rief Electricity and Magn BEMA1	etism Assessment	🛛 🛧

These are:

- Generally multiple-choice surveys
- Carefully crafted questions
- Conceptual topics across physics curriculum
- Additionally: beliefs, problem-solving skills, affect

Assessment Resources

physport.org/assessments

How do I know if my students are learning?

PhysPo Supporting physics to	n My Account Logout About Us Contact Us			
Home	Expert Recommendations	Teaching Methods	Assessments	Workshops
Browse Asse				
	Tell us about your	Any Level	s relevant to you.	nit
Assessment Focus Any Content knowledge Problem-solving Scientific reasoning Lab skills Beliefs / Attitudes Interactive teaching	Fo	Based Assessments rce Concept Inventory chanics Content knowledge (for rels: Intro college, High school mats: Pre/post, Multiple-choice		Research validatior \$
Format Any Pre/post ? Multiple-choice Multiple-response ? Agreed/sagree ?	Su Bel Lev	lorado Learning Attitud Irvey (CLASS) liefs / Attitudes (epistemological vels: Upper-level, Intermediate, Inter mats: Pre/post, Multiple-choice, Ag	beliefs) o college, High school	
Short answer Rubric ?		ief Electricity and Magn EMA)	etism Assessment	X 🛧

- Search for RBAs
- Get administration details
- Sample questions & typical results
- Download RBAs
- Download usage guides

Force Concept Inventory

RESEARCH VALIDATION SUMMARY

Based on Research Into:

Student thinking

Studied Using:

- Student interviews
- Sector 2 Expert review
- Manual Statistical Appropriate statistical analysis

Research Conducted:

- Main and the second sec
- By multiple research groups
- Peer-reviewed publication

About half of the questions on the FCI come from an earlier test called the Mechanics Diagnostic Test (MDT). Questions on the MDT were developed using students ideas from open-ended responses. These questions were then reviewed by experts, refined through student interviews and given to over 1000 students. Statistical analysis of the reliability of the MDT was conducted and the pre- and post-test were found to be highly reliable. For those FCI questions not taken directly from the MDT, open-ended responses and responses given by students in interviews were compared to ensure the questions were being interpreted correctly. Since its release, over 50 studies have been published using the FCI at both the high school and college

Research summary

Normalized Gain (

Data Explorer

physport.org/DataExplorer

Visualize and compare your students' performance on research-based assessment instruments.

Online workshops

physport.org/workshops

Video workshops for training teaching assistants and faculty professional development in best practices

Periscope

physport.org/periscope

Videos of students working with handouts for training TAs and faculty in best-practices.

What do you want to do?

- A. I have questions like "what's available for..." and "how do I...".I want to explore resources on PhysPort and ComPADRE on my device.
- B. I want to try a Periscope lesson about "What instructor behaviors facilitate student learning?"
- C. I want to have a discussion around questions like "What do we know about...". Please show me more data!
- D. My brain is full and I want some time to process what we've done.

Data

Eleanor Sayre: esayre@ksu.edu

21

Von Korff, J., *et al* (accepted). Secondary Analysis of Teaching Methods in Introductory Physics : a 50k - Student Study. American Journal of Physics

Does class size matter?

- Different sizes use different IE methods.
- Same trend for lecture and lab

Normalized gain by Class Size

Von Korff, J., *et al* (2016). Secondary Analysis of Teaching Methods in Introductory Physics : a 50k - Student Study. American Journal of Physics

Does institution type matter?

- Reduced Carnegie classification
- Only US schools

- Highly dependent on publishing effect
- Data are mostly Doc institutions.

Von Korff, J., *et al* (2016). Secondary Analysis of Teaching Methods in Introductory Physics : a 50k - Student Study. American Journal of Physics

At which point is the Electric Potential greater?

 $V_A = V_B$

Eleanor Sayre: esayre@ksu.edu

Franklin, S.V., Sayre, E.C., and J. Clark (2015) "Traditionally taught students learn; actively-engaged students remember" *AJP*

$$< g > = 0.25$$

Eleanor Sayre: esayre@ksu.edu

Franklin, S.V., Sayre, E.C., and J. Clark (2015) "Traditionally taught students
 learn; actively-engaged students remember" *AJP*

$$< g > = 0.25$$

< g > = 0.5

Eleanor Sayre: esayre@ksu.edu

Franklin, S.V., Sayre, E.C., and J. Clark (2015) "Traditionally taught students learn; actively-engaged students remember" *AJP*

Both classes learn the same amount during instruction, but the reformed class fails to forget afterwards.

Eleanor Sayre: esayre@ksu.edu

Franklin, S.V., Sayre, E.C., and J. Clark (2015) "Traditionally taught students learn; actively-engaged students remember" *AJP*

Surveys of student beliefs about physics

- How much do students' beliefs align with physicists?
- Measure shifts in physicist-like belief
- CLASS, MPEX

12 beliefs and attitudes surveys available on PhysPort! Survey

1. A significant problem in learning physics is being able to memorize all the information I need to know.

Strongly Disagree 1 2 3 4 5 Strongly Agree

2. When I am solving a physics problem, I try to decide what would be a reasonable value for the answer.

Strongly Disagree 1 2 3 4 5 Strongly Agree

3. I think about the physics I experience in everyday life.

Strongly Disagree 1 2 3 4 5 Strongly Agree

4. It is useful for me to do lots and lots of problems when learning physics.

Strongly Disagree 1 2 3 4 5 Strongly Agree

5. After I study a topic in physics and feel that I understand it, I have difficulty solving problems on the same topic.

Strongly Disagree 1 2 3 4 5 Strongly Agree

Adams, W. K., et al (2006). New instrument for measuring student beliefs about physics and learning physics: The Colorado Learning Attitudes about Science Survey. *Physical Review Special Topics - Physics Education Research*, 2(1), 010101.

Student Beliefs

- 24 studies
- Teaching method, class size, student population

"Ordinary" IE is not enough.

Focus on connecting ideas and observations. ("model building")

PhysPort.org Eleanor Sayre, esayre@ksu.edu

Madsen, A. M., McKagan, S. B., & Sayre, E. C. (2015). How Physics Instruction impacts students' beliefs about learning physics. *Physical Review Special Topics — Physics Education Research*.

What are physicists?

Sophomores

RESEARCH	Doing independent research	Charlie Oliver	Doing independent research	HIGH
	Doing research	Ed	Doing research	RESE.
HIGH	Having a deep understanding	Will Jack	Having a deep understanding	ARCH
ARCH	Having a physics mindset	Larry	Having a physics mindset	LOW
RESEARCH	Being committed to physics		Being committed to physics	RESEA
LOW	Having a deep understanding	Danny	Having a deep understanding	ARCH

Irving, P. W., & Sayre, E. C. (2016). Developing physics identities. *Physics Today*, 69 (May).

Seniors

REPORTS ON

Year Later (September 2014)

Once they receive a bachelor's degree in physics, new graduates typically follow one of two paths: enroll in graduate school or enter the employment market. In this publication we will explore the post-degree paths of the physics bachelor's from the classes of 2011 and 2012. Within these classes, nearly sixty percent of graduates chose to enroll in a graduate program, and about forty percent entered the employment market.

Figure 1

Status of Physics Bachelor's One Year After Degree,

We are the 1%.

The majority of potentially permanent positions accepted by physics PhDs were in fields other than physics.

AIP Statistical Research

28

The type of initial employment that physics PhDs accepted had an impact on whether or not they would be working in the field of physics. Thirtyeight percent of physics PhDs who accepted potentially permanent positions were working in the field of physics, with the remainder employed in fields outside of physics. The most common fields for physics PhDs with potentially permanent employment outside of the field of physics were engineering, computer software, and business or finance (**Figure 3**).

The vast majority of physics PhDs who accepted postdoctoral fellowships were working in the field of physics, with most continuing in the field of

Figure 4

There have been significant increases in the representation of Hispanic Americans among physics PhD recipients. The number of physics PhDs earned by Hispanics Americans has increased by about 300% during the last decade. The number of African Americans earning physics PhDs has not experienced a similar growth, with the number of degrees earned during the last decade averaging between 10 and 20 PhDs.

Page 6

Preparing non-faculty physicists

We are the 1%.

Excluding non-white, non-cis, non-male physicists

28

Cid and Kanim, arXiv:1710.02598

Where are physics students?

- 1/3 of all physics majors come from Bacc departments
- 2/3 of physics departments are Bacc only.

Highest physics degree offered by department	Calculus Based	Algebra Based	Conceptual
Bachelor's	49,000	48,000	30,000
Master's	18,000	18,000	13,000
PhD	112,000	87,000	32,000
Total	179,000	153,000	75,000

Introductory physics course enrollments at physics departments,

academic year 2007-08.

We estimate that more than 215,000 students were enrolled in a physics or physical science course in a two-year college during the

AIP Statistical Research

Cid and Kanim, arXiv:1710.02598

Gender gaps in learning physics

Madsen, A., McKagan, S. B., & Sayre, E. C. (2013). Gender gap on concept inventories in physics: What is consistent, what is inconsistent, and what factors influence the gap? *Physical Review Special Topics - Physics Education Research*, 9(2), 020121.

PhysPort.org Eleanor Sayre, esayre@ksu.edu

Gender gap: causes

Type of factor	Examples	Explains part of gap?
Background and preparation	high school GPA, major, physics1 grade, years of physics	no
Other assessment	other RBAI scores, grade in class	yes
Teaching method	Level of IE, Studio physics, etc	inconclusive or no.
Sociocultural factors	stereotype threat, beliefs inventories, locus of control	often yes.
Question construction	Item analysis, everyday vs. feminine context	no

PhysPort Supporting physics teaching with research-based resources

physport.org

Organizing your knowledge

- Synthesis research
- Expert recommendations
- Teaching method search
- Assessment search
- Data explorer
- Online workshops

PhysPort can help.

PhysPort Supporting physics teaching with research-based resources

physport.org

Learn about better teaching!

Search for teaching methods Read recommendations from experts

Be a PhysPort verified educator!

Download assessments Take online workshops

Do Physics Education Research!

Discover how students learn Build better pedagogy

Email us to learn more: smckagan@aapt.org esayre@ksu.edu

Periscope

HANDOUT What instructor behaviors facilitate student learning?

Introduction

In classes centered on collaborative group work, one of the instructor's most important jobs is to create an environment in which students express their physics ideas, engage with each other's reasoning, and get closer to a scientific understanding. What instructor behaviors best support these goals for students?

This episode shows an instructor in a tutorial who listens to a group of students express their ideas, then helps them clarify their different arguments. Sample discussion prompts are about what features of the interaction may have helped to make it successful.

Episode: "Depth"

Task for students

(from Open Source Tutorials in Physics Sense-Making)

Two containers with small holes in their sides are filled to the brim.

- A. Using a dashed line, sketch the path you think the water from each hole will take when it leaves the container.
- B. Where do you think the water will squirt out the hardest, and where the most weakly (or will it be equal)?
- C. What causes the water to squirt out more strongly from some places than from others? Explain the idea that you think should guide your predictions from now on.

Periscope

Looking into learning

in best-practices physics classrooms

physport.org/periscope

Episode 101: "Depth"

Filmed at the University of Maryland using Open Source Tutorials

Supported in part by NSF Grant No. 1323699

What instructor behaviors facilitate student learning?

- What do you notice? Talk with the people near you.
- What does Levi do to draw out students' ideas?

Sample discussion prompts

- 1. What did you notice in this episode? Talk to your neighbor about what you noticed.
- 2. The first step in effectively facilitating student learning is to find out where the students are coming from. What does Levi (the instructor) say that gets his students to articulate their ideas?
- 3. What does Levi do (nonverbally) to support the students in expressing themselves?
- 4. It can be tricky for an instructor to draw out both sides of a contradictory argument without embarrassing anyone. What specific strategies or behaviors does Levi use to keep everyone in the game?
- 5. What instructor behaviors facilitate student learning, as suggested in

Transcript

physport.org/periscope

Available now! 66 lessons Facilitators' Guide

PhysPort Supporting physics teaching with research-based resources

physport.org

Organizing your knowledge

- Synthesis research
- Expert recommendations
- Teaching method search
- Assessment search
- Data explorer
- Online workshops

PhysPort can help.

PhysPort Supporting physics teaching with research-based resources

physport.org

Learn about better teaching!

Search for teaching methods Read recommendations from experts

Be a PhysPort verified educator!

Download assessments Take online workshops

Do Physics Education Research!

Discover how students learn Build better pedagogy

Email us to learn more: smckagan@aapt.org esayre@ksu.edu

