Learner Centered Teaching in Physics and Astronomy

Dr. Edward Prather
University of Arizona
Center for Astronomy Education (CAE)
hp://astronomy101.jpl.nasa.gov
Collaboration of Astronomy Teaching Scholars (CATS)

- Leilani Arthurs, UNL
- Duncan Brown, Syracuse Univ.
- Sanlyn Buxner, Univ. of Arizona
- David Consiglio, Bryn Mawr College
- Tim Chambers, U Michigan
- Steve Desch, Guilford Tech. CC
- Doug Duncan, CU Boulder
- Jeffrey Eckenrode, Pacific Science CTR
- Tom English, Guilford Tech. CC
- John Feldmeier, Youngstown State Univ.
- Amy Forestell, SUNY New Paltz
- Rica French, MiraCosta College
- Adrienne Gauthier, Dartmouth
- Pamela Gay, SIU-Edwardsville
- Dennis Hands, High Point Univ.
- Kevin Hardegree-Ullman, University of Toledo
- Melissa Hayes-Gehrke, Univ. of Maryland
- Seth Horstein, CU Boulder
- David Hudgins, Rockhurst Univ.
- Chris Impey, Univ. of Arizona
- Julia Kamenetzky, Univ of Arizona
- Jessica Kapp, Univ. of Arizona
- John Keller, Cal Poly SLO
- Julia Kregenow, Penn State
- Michelle Wooten, Univ of Alabama
- Kevin Lee, UNL & NSF
- Patrick Len, Cuesta College
- Chris Lintott, Univ. of Oxford
- Michael LoPresto, Henry Ford CC
- Daniel Loranz, Truckee Meadows CC
- Julie Lutz, Univ. of Washington
- Danny Martino, Santiago Canyon College
- Benjamin Mendelsohn, West Valley College
- Ed Montiel, Louisiana State University
- Peter Newbury, Univ. of British Columbia
- Lee Powell, UN Kearney
- Matthew Price, Ithaca College
- Jordan Raddick, Johns Hopkins Univ.
- Alex Rudolph, Cal Poly - Pomona
- Travis Rector, Univ. of Alaska
- Paul Robinson, Westchester CC
- Wayne Schlingman, Ohio State
- Sébastien Cormier, San Diego College
- Colin Wallace, UNC
- Kathryn Williamson, NRAO
- James Wysong Jr., Hillsborough CC
- Todd Young, Wayne St. College
Take Home Messages

- Research-validated interactive learning strategies can benefit ALL students in ALL classroom environment - BUT
- The quality of our implementation is likely the most deterministic factor toward student achievement
CAE National Study

- Almost 4000 students
- 31 institutions
- 36 instructors
- 69 different sections
 - Section sizes vary from <10 to 180
 (now with sections >750!)

Center for Astronomy Education

Dedicated to the professional development of introductory astronomy instructors
Just the tip of the iceberg of what it takes to create a highly functioning interactive engagement classroom.
Moderation Continues to Grow by Leaps & Bounds

Tips from Our New Guest Moderator on Moderation

Hello, fellow astronomy educators! I’m Patrick M. Len ("P-dog" to my students), and I am your new Guest Moderator for Astrolmer@CAE. I currently teach physics and astronomy at Cuesta College, a small community college in San Luis Obispo, CA, and have taught physics and astronomy at Coolmoss Star College (Sacramento, CA), Sonoma State University (Rohnert Park, CA), and University of California (Davis, CA).

I have been closely following Astrolmer@CAE for a number of years. Moving ... More >>

>> More Teaching Strategies

CAE Methods & Materials:
A "Nebula" Instructor's Perspective
This Month’s Teaching Strategy comes to us from Joe Kabbes (Harper Community College). We met Joe at our CAE Teaching Excellence Workshop in St. Louis last summer. More >>

Revisiting Think-Pair-Share:
An Expanded "How-To" Guide
After attending the Austin CAE Teaching Excellence Workshop in January, Amy Forrestell, UT Austin graduate student, decided to take a look at the Think-Pair-Share... More >>

Classroom Assessment Techniques:
A Brief Overview
In our CAE Teaching Excellence Workshops, we discuss quite a few classroom assessment techniques that could be used to improve learning in an introductory... More >>

>> Seeing the Universe through NASA’s Eyes

NASA’s Image of the Day Gallery
Teaching Excellence Workshops

Fall/Winter 2010/11
1. Oberlin, OH
 - Topic: Cosmos in the Classroom
 - Dates: September 18-19, 2010
2. Dearborn, MI
 - Topic: Regional Teaching Exchange
 - Dates: October 01-02, 2010
3. Seattle, WA
 - Topic: Tier II CATS, Special Topics
 - Dates: January 9, 2011
4. Plano, TX
 - Topic: Regional Teaching Exchange
 - Dates: February 12, 2011

Spring/Summer 2011
7. New Paltz, NY
 - Topic: CATS Regional Teaching Exchange
 - Dates: March 26, 2011
8. El Paso, Texas
 - Topic: Tier I
 - Dates: April 15-16, 2011
9. Seattle, WA
 - Topic: CATS Regional Teaching Exchange
 - Dates: April 18, 2011
10. Boston, MA
 - Topic: Tier I CATS
 - Dates: May 21 & 22, 2011
11. Boston, MA
 - Topic: Tier I CATS, Special Topics
 - Dates: May 22, 2011
12. Hilo, HI

Fall/Winter 2011/12
13. Austin, TX
 - Topic: Tier I CATS
 - Dates: January 7-8, 2012
14. Austin, TX
 - Topic: Tier II CATS, Special Topics
 - Dates: January 8, 2012
“Most ideas about teaching are not new, but not everyone knows the old ideas.” Euclid (300 B.C.)
Centennial Hall Performing Arts Theater at University of Arizona
Perspectives on Teaching in the Active Learning Environment

“I’m comfortable engaging with my students.”

“I know how to get my students to intellectually engage in critical reasoning and problem solving.”

“I know how to create highly interactive learning environments that get all my students collaborating.”

“I know what to do when my students get stuck.”

“I know how to handle a group that is asking for answers.”

“I know how to handle a group that is not collaborating.”

etc., etc., etc…
What Can I do Besides Lecture to Engage Students in their Learning?

- Ask students questions (not all questions are equal)
- Use interactive videos, demonstrations, animations, and simulations
- In-class writing (with or without discussion)
 - Muddiest Point
 - Summary of Today's Main Points
 - Writing Reflections
- Think-Pair-Share or Peer Instruction
- Small Group Interactions
 - Concept Maps
 - Case Studies
 - Sorting Tasks
 - Ranking Tasks
 - Lecture-Tutorials
- Student Debates (individual/group)
- Whole Class Discussions
Does your class intellectually engage your students and deepen their conceptual understanding and critical thinking ability or does it reinforce the memorization of facts and declarative knowledge?

Bloom’s Taxonomy of Educational Objectives:

- evaluation
- synthesis
- analysis
- application
- comprehension
- declarative knowledge
If a Picture is worth a thousand words, then what is a real-world, first-hand, experience worth?

Please participate in the role of a good student!

Don’t get stuck or caught up in thinking like a PHD Physicist or Astronomer!!!!!

“Eventually, Billy came to dread his father’s lectures over all other forms of punishment”
Todays Topic:

“Motion of Extrasolar Planets”

Please pay attention to:

The sequencing of different instructional strategies
The different implementation methods used
How feedback was incorporated
How collaboration was encouraged and motivated
Tutorial: Motion of Extrasolar Planets

• Work with a partner!
• Read the instructions and questions carefully.
• Discuss the concepts and your answers with one another. Take time to understand it now!!!
• Come to a consensus answer you both agree on.
• If you get stuck or are not sure of your answer, ask another group.
CAE National Study

- Almost 4000 students
- 31 institutions
- 36 instructors
- 69 different sections
 - Section sizes vary from <10 to 180
 (now with sections >750!)
This was a truly national study
Teaching Excellence Workshops

Workshops Locations
Click a location to register for a specific workshop

Fall/Winter 2010/11
1. Oberlin, OH
 Tier 1
 September 19-19, 2010
2. Dearborn, MI
 Regional Teaching Exchange
 October 1-2, 2010
3. Seattle, WA
 Tier I, CATS
 January 8-9, 2011
4. Seattle, WA
 Tier II, CATS, Special Topics
 January 9, 2011
5. Plano, TX
 Regional Teaching Exchange
 February 12, 2011
6. State College, PA
 Tier 1
Spring/Summer 2011
7. New Paltz, NY
 CATS, Regional Teaching Exchange
 March 26, 2011
8. El Paso, Texas
 Tier 1
 April 15-16, 2011
9. Seattle, WA
 CATS, Regional Teaching Exchange
 April 16, 2011
10. Oceanside, California
 Regional Teaching Exchange
 May 7, 2011
11. Boston, MA
 Tier I, CATS
 May 21 & 22, 2011
12. Oceanside, California
 Regional Teaching Exchange
 May 21-22, 2011
13. Oceanside, California
 Regional Teaching Exchange
 June 18-19, 2011
14. Oceanside, California
 Regional Teaching Exchange
 August 20, 2011
15. Austin, TX
 Tier I, CATS
 January 7-8, 2012
16. Austin, TX
 Tier II, CATS, Special Topics
 January 8, 2012

Fall/Winter 2011/12
\[g = \frac{\text{post\%} - \text{pre\%}}{100\% - \text{pre\%}} \]
\[<g> = \frac{<\text{post}\%>-<\text{pre}\%>}{100%-<\text{pre}\%>} \]
Instructor Surveys

- To assess the level of interactivity in each classroom, we asked each instructor to fill out a survey detailing how they spent their class time.

- This survey was used to construct an “Interactivity Assessment Score” (IAS) based on what percentage of total class time is used for interactive activities.
Lower IAS (<25%)
<g>avg = 0.13

Higher IAS (>25%)
<g>avg = 0.29
Demographic Survey

• We also asked 15 demographic questions to allow us to determine how such factors as
 – Gender
 – Ethnicity
 – English as a native language
 – Parental education
 – Overall GPA
 – Major
 – Number of prior science courses
 – Level of mathematical preparation
 interact with instructional context to influence student conceptual learning

• This survey also gives us a snapshot of who is taking Astro 101 in the US
• We conducted a full multivariate modeling analysis of our data

• We confirm that the level of interactivity is the *single most important variable* in explaining the variation in gain, even after controlling for all other variables
<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Coefficients 1 (standard error)</th>
<th>Coefficients 2 (standard error)</th>
<th>Coefficients 3 (standard error)</th>
<th>Coefficients 4 (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.170</td>
<td>-0.235**</td>
<td>-0.266*</td>
<td>-0.290**</td>
</tr>
<tr>
<td>Male</td>
<td>0.093**</td>
<td>0.183**</td>
<td>0.087**</td>
<td>0.170**</td>
</tr>
<tr>
<td>Low White</td>
<td>0.012</td>
<td>0.020</td>
<td>0.033</td>
<td>0.055</td>
</tr>
<tr>
<td>Father with Bachelor's degree or higher</td>
<td>0.015</td>
<td>0.015</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Natural log of Family Income</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Class year</td>
<td>0.031**</td>
<td>0.214**</td>
<td>0.054**</td>
<td>0.250**</td>
</tr>
<tr>
<td>Number of previous physical science courses</td>
<td>0.034**</td>
<td>0.120**</td>
<td>0.065**</td>
<td>0.165**</td>
</tr>
<tr>
<td>Previous Astrophysics course</td>
<td>-0.029</td>
<td>-0.079</td>
<td>-0.031</td>
<td>-0.042</td>
</tr>
<tr>
<td>Pretend Percent Correct</td>
<td>-0.005**</td>
<td>-0.224**</td>
<td>-0.005**</td>
<td>-0.243**</td>
</tr>
<tr>
<td>Interactivity Score</td>
<td>0.0051**</td>
<td>0.258**</td>
<td>0.066**</td>
<td>0.214**</td>
</tr>
<tr>
<td>Cross term: Interactivity score X Arts, Humanities, Soc Sci Major</td>
<td>0.0392*</td>
<td>0.183*</td>
<td>0.0237*</td>
<td>0.158*</td>
</tr>
<tr>
<td>Cross term: Interactivity score X Male</td>
<td>0.0001</td>
<td>0.004</td>
<td>0.0001</td>
<td>0.004</td>
</tr>
<tr>
<td>Cross term: Interactivity score X White</td>
<td>-0.0006</td>
<td>-0.044</td>
<td>-0.0006</td>
<td>-0.044</td>
</tr>
<tr>
<td>Cross term: Interactivity score X Native English speaker</td>
<td>0.0022</td>
<td>0.120</td>
<td>0.0022</td>
<td>0.120</td>
</tr>
<tr>
<td>Cross term: Interactivity score X College GPA</td>
<td>-0.0030</td>
<td>-0.182</td>
<td>-0.0030</td>
<td>-0.182</td>
</tr>
<tr>
<td>Cross term: Interactivity score X Last math class taken</td>
<td>-0.0002</td>
<td>-0.057</td>
<td>-0.0002</td>
<td>-0.057</td>
</tr>
<tr>
<td>Cross term: Interactivity score X Number of previous physical science courses</td>
<td>0.0001</td>
<td>0.016</td>
<td>0.0001</td>
<td>0.016</td>
</tr>
<tr>
<td>F Value</td>
<td>18.2**</td>
<td>24.3**</td>
<td>26.2**</td>
<td>21.0**</td>
</tr>
<tr>
<td>N</td>
<td>920</td>
<td>920</td>
<td>920</td>
<td>920</td>
</tr>
<tr>
<td>Adjusted R-Square</td>
<td>0.105</td>
<td>0.250</td>
<td>0.250</td>
<td>0.253</td>
</tr>
</tbody>
</table>

* p < .05
** p < .01
The results of our investigation reveal that the positive effects of interactive learning strategies apply equally to men and women, across ethnicities, for students with all levels of prior mathematical preparation and physical science course experience, independent of GPA, and regardless of primary language. These results powerfully illustrate that all categories of students can benefit from the effective implementation of interactive learning strategies.
The take home message Part II

Implementation is the most important factor to success in student learning.

More work on professional development of faculty is needed if we are to see wide spread adoption and proper implementation of research-validated instructional strategies.
Item Response Theory (IRT)

\[P(X_{pi} = 1 \mid \theta_p, b_i) = \frac{\exp[\theta_p - b_i]}{1 + \exp[\theta_p - b_i]} \]
Class 370401

Class 30101

Class 90301

Class 280401
Learning Gains

% Decrease in Failure Rate

Numbers indicate # of studies reviewed

STEM Discipline

- Biology
- Chemistry
- Computer Science
- Engineering
- Geology
- Math
- Physics
- Psychology
- Overall

Hedges's g

% Decrease in Failure Rate

traditional lecture class - mean scores

Freeman S et al. PNAS 2014;111:8410-8415