Effective Practices for Physics Programs (EP3) Breakout Session #2

Recruiting of Undergraduate Physics Majors

Contributors
David Cook, Vivian Incera, and Galen Pickett

Session Presenters
Courtney Lannert, Smith College & UMass Amherst
G. R. Sudhakaran (Sudha), University of Wisconsin-La Crosse
EP3 Breakout Session #2
Recruiting

For this session:
• What is this section of the EP3 guide about?
• Where is it in the development process?
• Some tips on how to read and use the section.
• Some time to look at the content.
• Q&A

Please type your questions, feedback, and information in the Google Doc. The link can be found in the agenda.

We will compile your feedback to populate our FAQ, providing a summary of the EP3 sessions to participants through our mailing list.
Recruiting of Undergraduate Physics Majors

Contributors:
• David Cook (Lawrence University),
• Vivian Incera (City College of Staten Island), and
• Galen Pickett (California State University Long Beach)

Description:
• Effective recruiting practices are critical to increasing the number of majors and minors in the program. Recruiting efforts need to target students at many points: before they enter your institution, as they enter either directly from high school or as transfers, in your introductory courses, and in other programs at your institution. Physics programs that are successful at recruiting are welcoming, inclusive, and student-focused.
Where is this section in our development process?

Synthesizing feedback from reviewers

For each section there will be several individuals (including yourself) contributing content.

The task force and editorial director will then synthesize into one cohesive document.

We may have some additional questions for you. After internal vetting you will have a chance to see and comment on the synthesized section.

Each section will be sent for expert review to at least 4 individuals.

To see an example of a final section the Teacher Preparation can be found here: http://apps3.aps.org/bpupp/
What will a section look like?

Always present

Description
Recruiting includes convincing students who are not yet physics majors to join the undergraduate program. Effective recruiting practices are critical to increasing the number of majors and minors in the program. Recruiting efforts need to target students at many points: before they enter your institution, as they enter either directly from high school or as transfers, in your introductory courses, and in other programs at your institution. Programs that are successful at recruiting are welcoming, inclusive, and student-focused.

Benefits
Effective recruiting practices lead to an increase in the number of students entering the program and enrolled in courses, improve the diversity of the incoming cohort, and strengthen the viability of the program.

Effective practices
Sections have Themes and Actionable Practices

Theme (about 3 to 6 in a section)

• Create and review a comprehensive and collaborative recruiting plan
 o Involve all members of your program and administration in the plan
 o Explicitly include strategies for recruiting and supporting students from groups that are underrepresented in your program and in physics
 o Regularly collect and analyze data about students and recruiting and use these data to shape and assess your recruiting plan
 o Review and refine your plan annually

Actionable Practice (up to ≈ 6 in a theme)
Actionable Practices come with some “how-to’s”

Actionable Practice (up to 6 in a theme)

- Create mechanisms to encourage and support students in your introductory courses in becoming physics majors or minors
 - *Communicate in class the potential to major or minor in physics and the course requirements.*
 - *Offer non-STEM-major physics courses in the fall in order to give students the opportunity to begin taking calculus in the spring of their first year if they want to pursue physics.*

Click on an Actionable Practice to expand its *Implementation Strategies* (up to ≈ 6 in an actionable practice)
Please remember that the EP3 Guide

• **Is NOT** a checklist of required actions.
• **It IS** a list of possible actions departments may consider if appropriate and applicable to their local situation.

• Chapters and sections are written and reviewed by individuals from a range of institution-types (to have something for each type of institution to consider).

• This is **NOT** every possible idea for what to do (e.g., the ‘kitchen sink’).
• This does **NOT** contain the smallest level of detail outlining the specifics of implementing an idea.
• There will be opportunities to discuss specifics applicable to your local context that may include: EP3 workshops, Departmental Action Leadership Institutes (DALI, year-long commitment), and online forum (immediate feedback).
Recruiting of Undergraduate Physics Majors/Q&A

You can find the draft section here:
https://ep3preview.netlify.app/sections/recruiting-of-undergraduate-physics-majors

Read/peruse the content and then we will discuss. Please be sure to include your questions in the Google Doc (link is listed in your agenda, and in the chat).

For the 3:25 Breakout session only, please consider providing feedback on your first impression of the document (including the layout/formatting of the section). This information will go to the Program Evaluator and will help refine what we have:
https://docs.google.com/forms/d/e/1FAIpQLSfFXHQ-7O2tQafaCNmvVRMPL6crXJ6hcidPdr-xV-GxFObnHg/viewform?usp=pp_url&entry.1907548474=Recruiting+of+Undergraduate+Physics+Majors
Co-chairs:
• David Craig (craigda@oregonstate.edu)
• Mike Jackson (Michael.Jackson@millersville.edu)

Editorial Director: Sarah “Sam” McKagan (mckagan@aps.org)
APS Lead: Theodore Hodapp (hodapp@aps.org)
AAPT Liaison: Bob Hilborn (rhilborn@aapt.org)
External Evaluator: Stephanie Chasteen (stephanie@chasteenconsulting.com)
Community Engagement: David Craig, Joel Corbo, Sam McKagan
Research Team: Chandra Turpen, Joel Corbo

This material is based upon work supported by the National Science Foundation under Grant Nos. 1738311, 1747563, 1821372
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.