Table of Contents

Prefacev

Executive Summary .. vi

Chapter 1. Introduction ... 1

 Caveats ... 1
 Undergraduate Physics in the United States 2
 The Report .. 3

Chapter 2. History of the National Task Force on Undergraduate Physics 4

 1995–1998 ... 4
 1999–Present .. 6
 Comparison with Efforts in Mathematics, Chemistry, and Engineering. 9

Chapter 3. Procedures for SPIN-UP Site Visits .. 11

 Site Selection .. 11
 Site Visit Information and Schedule 12
 List of Site Visits ... 13

Chapter 4. Analysis .. 14

 General Comments ... 14
 An Analytic Outline ... 15
 The Elements of a Thriving Undergraduate Physics Program 16
 Counter-Examples .. 33

Chapter 5. The Survey ... 34

 Background ... 34
 Courses and Curricula .. 36
 Recruitment Activities ... 39
 Interactions between Faculty and Students 40
 Alumni Tracking ... 43
 Curricular Reform ... 44
 Overall Evaluations of Undergraduate Physics Programs 46

Chapter 6. Connections, Lessons, and Other Issues 47

 Undergraduate Mathematics Site Visits 47
 Revitalizing Undergraduate Science Education 48
 Thriving in the Business World .. 49
 Underrepresented Groups and the Issue of Diversity 49
 Two-year Colleges ... 51
 Teacher Preparation .. 51
 Future Directions ... 51
 Final Words of Wisdom and Encouragement 52

References ... 53

Appendices ... 56

 I. Physics Education Resources .. 56
 A. Physlets .. 56
 B. Scale-Up ... 56
 C. Workshop Physics .. 57
 D. Investigative Science Learning Environment (ISLE) 57
 E. ALPS and ActivPhysics (Active Learning in Large and Small Classes) 58
 F. Matter and Interactions, Electric and Magnetic Fields 58
 G. Teaching Physics Through Cooperative Group Problem Solving 58
 H. Peer Instruction .. 59
 I. Just-in-Time Teaching (JiTT) ... 59
Preface

This report describes the results of the project Strategic Programs for Innovations in Undergraduate Physics (SPIN-UP), organized by the National Task Force on Undergraduate Physics. The Task Force received support for SPIN-UP from the American Association of Physics Teachers, the American Physical Society, the American Institute of Physics, and a generous grant from the ExxonMobil Foundation. Particular thanks go to Edward F. Ahnert, President of the ExxonMobil Foundation, Truman T. Bell, program officer, and Jean Moon, consultant to the Foundation. Their assistance in shaping and focusing the goals of the project was invaluable. We gratefully acknowledge Roman Czujko and his colleagues at the American Institute of Physics Statistical Research Center for their work on the survey of all bachelor’s degree-granting physics programs in the United States. Although led by the Task Force, SPIN-UP benefited from the volunteer efforts of more than 50 physicists for the site visits, the hospitality and work of the faculty of the 21 physics departments visited as part of the site visit program, and the generous time spent on the survey by 74% of the physics departments in the country. SPIN-UP is indeed a physics community effort.
Executive Summary

Strategic Programs for Innovations in Undergraduate Physics (SPIN-UP) set out to answer an intriguing question: Why, in the 1990s, did some physics departments increase the number of bachelor’s degrees awarded in physics or maintain a number much higher than the national average for their type of institution? During that decade, the number of bachelor’s degrees awarded in the physical sciences, engineering, and mathematics declined across the country. Yet in the midst of this decline some departments had thriving programs. What made these departments different? What lessons can be learned to help departments in the sciences, engineering, and mathematics that are—to put it generously—less than thriving? SPIN-UP, a project of the National Task Force on Undergraduate Physics, set out to answer these questions by sending site visit teams to 21 physics departments whose undergraduate programs were, by various measures, thriving. These visits took place mostly during the 2001–2002 academic year. In addition, with the aid of the American Institute of Physics Statistical Research Center, SPIN-UP developed a survey sent to all 759 departments in the United States that grant bachelor’s degrees in physics. The survey yielded a 74% response rate distributed broadly across the spectrum of U.S. physics departments.

The site visit reports provided specific insight into what makes an undergraduate physics program thrive. In very compact form, these departments all have

- A widespread attitude among the faculty that the department has the primary responsibility for maintaining or improving the undergraduate program. That is, rather than complain about the lack of students, money, space, and administrative support, the department initiated reform efforts in areas that it identified as most in need of change.
- A challenging, but supportive and encouraging undergraduate program that includes a well-developed curriculum, advising and mentoring, an undergraduate research participation program, and many opportunities for informal student-faculty interactions, enhanced by a strong sense of community among the students and faculty.
- Strong and sustained leadership within the department and a clear sense of the mission of its undergraduate program.
- A strong disposition toward continuous evaluation of and experimentation with the undergraduate program.

In Chapter 4 of this report, each of these themes is further analyzed and illustrated with examples from the site visit departments. Chapter 5 provides a summary of the survey results.

Financial support for project SPIN-UP was provided by the ExxonMobil Foundation, the American Association of Physics Teachers, the American Physical Society, and the American Institute of Physics.