(3) If the moon is receding from the earth at the rate of 4 cm per year, how much power is being dissipated in tidal friction?

In a Kepler orbit the angular momentum is proportional to $r^{1/2}$, so an increase by Δr in the time t requires a torque of magnitude $L = (\Delta r/2r)(Mr^2\Omega_m)/t$, where M is the moon's mass and Ω_m its orbital angular velocity. An equal and opposite torque acts on the Earth in the sense to reduce its rotational velocity ω_e . The power dissipated in tidal friction must be $L\omega_e$. With $r=4\times10^{10}$ cm, $M=8\times10^{25}$ g, $\Omega_m=2\times10^{-6}$ s⁻¹, $\omega_e=6\times10^{-5}$ s⁻¹, and $t=3\times10^7$ s, $L\omega_e$ amounts to 2.5×10^{12} watts. Refinements of order M/M_e are neglected.