(1) A copper wire 1 km long is connected across a 6-volt battery. How long does it take a conduction electron to drift around the circuit? (Room temperature.) With one conduction electron per atom, copper contains approximately 8×10^{22} conduction electrons per cm³. (Atomic weight 63.5; density 9 g cm⁻³.) The resistivity of copper at room temperature is 2×10^{-6} ohm cm. Applying 6 V to 10^{5} cm of wire causes a current density of 30 A cm⁻². The drift speed of the conduction electrons in cm s⁻¹ must then be $30/(8 \times 10^{22} \times 1.6 \times 10^{-19})$ = 2.3×10^{-3} cm s⁻¹. At that rate an electron will drift once around the circuit in a little more than one year.