(1) If every car and truck in the U.S. were driven 300 miles north and left there, by how much would the length of a day be changed? Shifting mass m northward by a small distance s on a sphere of radius r reduces its moment of inertia about the sphere's axis by $2msr\sin\theta\cos\theta$, where θ is the latitude. Over most of the U.S. $\sin\theta\cos\theta$ is close to 1/2. For the moment of inertia of the Earth I'll use that of a uniform sphere of mass M, $0.4 Mr^2$. The fractional change resulting from the shift of mass is therefore 5ms/2Mr. I estimate m as 1.5×10^{11} kg (10^8 vehicles averaging 1.5 tons each). Then with $M = 6 \times 10^{24}$ kg and s/r = 300/4000 = 0.075, the fractional decrease in moment of inertia is 5×10^{-15} . That will shorten the day by about 0.4 nanoseconds.