(2) Measurements by Pioneer 10 of the magnetic field of Jupiter [L. Davis, Jr., A. S. Goldhaber, and M. M. Nieto, Phys. Rev. Lett. 35, 1402 (1975)] showed that the range of the electromagnetic force must be at least 5×10^{10} cm. How large is the implied upper bound on the rest mass of the photon? If a green photon races an x-ray photon across the visible universe, how far behind will it finish?

Not worrying about factors of two, we can say that the photon's Compton wavelength \mathcal{X}_C must be greater than 5×10^{10} cm, so its rest mass $\hbar/\mathcal{X}_C c$ cannot exceed 7×10^{-49} gm. A green photon has $\lambda \approx 10^{-5}$ cm. If it has the mass just

mentioned its γ is λ_C/λ or 5×10^{15} . Then $1-\beta=1/2$ $\gamma^2=2\times 10^{-32}$. For the x-ray photon $1-\beta$ is negligible in comparison. After racing for 10^{28} cm the green photon will trail by only $2\,\mu\text{m}!$