(1) A loudspeaker aperture 12 in. in diameter is putting out 5 W of acoustic power at a frequency around 500 cps. Estimate the amplitude of vibration of the air at the aperture.

The area of the aperture is 0.07 m^2 ; the power density in the outgoing wave is 70 W/m^2 . For air of density ρ oscillating with amplitude A at frequency ω the kinetic energy in unit volume, averaged over one cycle, is $\rho A^2 \omega^2 / 4$. Doubling that to get the total energy density in the wave and multiplying by the speed of sound V to get the power we have $70 \text{ W/m} = \rho A^2 \omega^2 V / 2$. Solving for A with $\rho = 1 \text{ kg/m}^3$, $\omega^2 = 10^7 \text{s}^{-2}$, and V = 330 m/s, we find A = 0.2 mm.