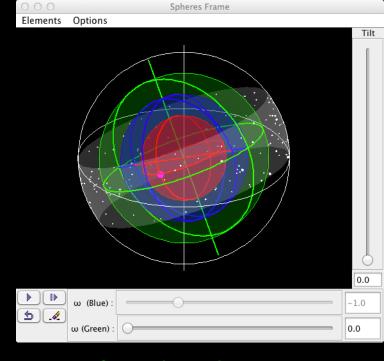
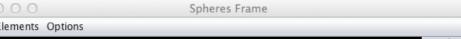

The Spheres of Eudoxus

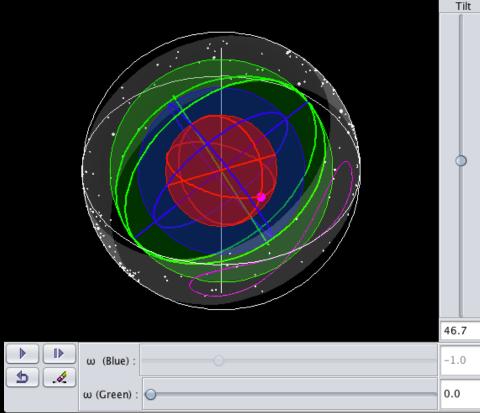
Todd Timberlake Berry College


Resources

- Spheres of Eudoxus EJS model on ComPADRE: http://www.compadre.org/osp/items/detail.cfm?ID=11198
- Copernican Revolution page:
- http://facultyweb.berry.edu/ttimberlake/copernican/
- Scale of the Universe page:
- http://facultyweb.berry.edu/ttimberlake/galaxies/

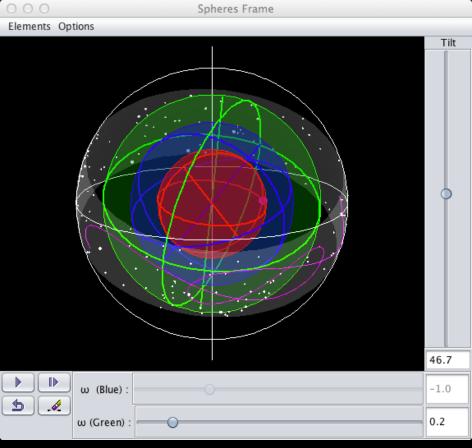

Model of Eudoxus (408-355 BCE)

- First geometrical model for motion of heavenly bodies.
- All of Eudoxus' works have been lost.
- Descriptions from Aristotle and Simplicius, reconstruction by Schiaparelli (others possible).
- We will focus on model of planetary motion.


The Spheres

- Nested spheres concentric with Earth. Axis of each sphere attaches to next sphere out.
- Sphere 1 (outer): rotates about celestial axis in one sidereal day.
- Sphere 2: rotates about ecliptic axis in planet's zodiacal (or ecliptic) period.
- Sphere 3: rotates about axis through equator of Sphere 2 in planet's synodic period.
- Sphere 4: rotates about axis tilted relative to Sphere 3's axis with same period but in opposite sense from Sphere 3.

The Hippopede

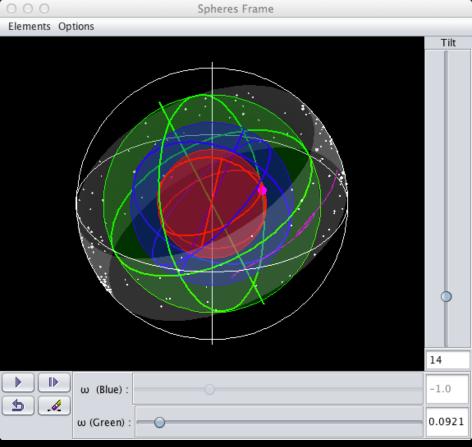


• The function of Spheres 3 and 4 is to produce a figure-8 motion known as the "hippopede" (horse fetter).

Sky View Options

Sky View Options

Retrograde



 Combined with the motion along the ecliptic from Sphere 2, the hippopede can produce periodic retrograde motion.

Sky View Frame

Sky View Options

Planetary Motions

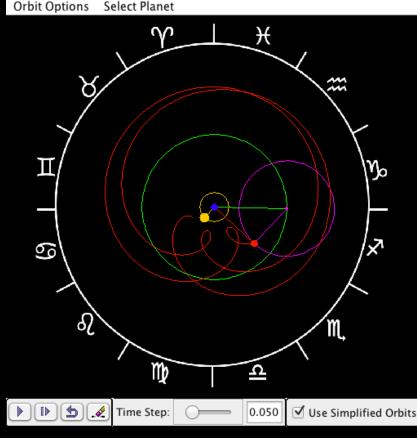
- This model can produce qualitatively accurate depictions of the motion of Jupiter and Saturn.
- Ex: Jupiter's Sphere 2 has ω =0.091.

Sky View Frame
Sky View Options

Judging Eudoxus

Pros

- Motion of planet along ecliptic
- Periodic retrogrades


Cons

- Retrogrades are always symmetric about ecliptic (not observed).
- Can't even qualitatively reproduce motions of Venus and Mars (Ex: Venus' Sphere 2 has ω =1.6).
- No changes in brightness!

Future of Eudoxus

- Adopted by Aristotle (384-322 BCE) for his Earthcentered cosmology.
- Improved by Callipus (c. 370-300 BCE).
- Homocentric models different from that of Eudoxus were revived by al-Bitruji (12th cen), Fracastoro (16th Cen) and others.
- Set the standard by which the astronomical models of Apollonius (3rd cen BCE), Hipparchus (2nd cen BCE), and Ptolemy (2nd cen CE) were judged.

Beauty of Ptolemy

Orbit Frame

Pros:

- Gives qualitatively (and quantitatively) accurate depiction of motion of all planets.
- Retrogrades are not symmetric about the ecliptic (not shown in 2D model).
- Accounts for variations in brightness, with superior planets brightest at opposition.

Cons:

- Motions not all centered on Earth violates Aristotle's cosmology.
- Doesn't specify order of planets (neither did Eudoxus).
- Mysterious connection between planets and Sun (also true for Eudoxus).
- Only accurate to about a degree (much better than Eudoxus).

Value of Teaching Historical Theories

- Studying historical models gives students the opportunity to evaluate a scientific theory.
- Students learn that scientific theories are generally judged in comparison to other theories.
- Students learn that theories are judged not only on predictive accuracy, but also on fit with other accepted theories and explanatory power (solving mysteries).