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Abstract 

Legendre transforms appear in two places in a standard undergraduate physics curriculum: 
(1) in classical mechanics when one switches from Lagrangian to Hamiltonian dynamics, and 
(2) in thermodynamics to motivate the connection between the internal energy, enthalpy, and 
Gibbs and Helmholtz free energies. Both uses can be compactly motivated if the Legendre 
transform is properly understood. Unfortunately, that transform is often relegated to a footnote in 
a textbook, or worse is presented as a complicated mathematical procedure. In this poster, I 
simplify the idea to the point that the Legendre transform can be elegantly presented in class in a 
sensible and accessible manner. In a nutshell, a Legendre transform simply changes the 
independent variables in a function of two variables by application of the product rule. 

History 

The transform is named after the French mathematician Adrien-Marie Legendre (1752–1833). 
He is also noted for establishing the modern notation for partial derivatives, which was 
subsequently adopted by Carl Jacobi in 1841, as well as for work on his eponymous differential 
equation and polynomials. 

What is a Legendre transform used for? 

A Legendre transform converts from a function of one set of variables to another function of 
a conjugate set of variables. Both functions will have the same units. 

eg. 1) Convert from the Lagrangian    L(x, !x)  to the Hamiltonian ( , )H x p . Here the velocity   !x  
and the linear momentum p are conjugate variables, and both L and H have units of energy. 

eg. 2) Convert between the internal energy U, enthalpy H, Helmholtz free energy F, and Gibbs 
free energy G. The two conjugate pairs of variables are pressure P and volume V, and 
temperature T and entropy S. (Optionally, the chemical potential µ and number of particles N can 
be added in as another conjugate pair.) All of these thermodynamic potentials have units of 
energy. 
  



How does a Legendre transform work? 

The key idea is to use the product rule. If ( , )x y  is a conjugate pair of variables, then 
( )d xy xdy ydx= +  relates the variation dy in quantity y to the variation dx in quantity x. 

eg. 1)   !x p  has the same units as L and H 

eg. 2) PV and TS have the same units as U, H, F, and G 

Mathematical details 

Consider a function of two independent variables, call it ( , )f x y . Its differential is 

 
y x

f f
df dx dy

x y

⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
. (1) 

Defining ( )yu f x≡ ∂ ∂  and ( )xw f y≡ ∂ ∂ , Eq. (1) can be rewritten as 

 df u dx wdy= + . (2) 

We call u and x a conjugate pair of variables, and likewise w and y. We can recognize our 
original variables x and y of the function f because the right-hand side of Eq. (2) is written in 
terms of differentials of those two variables. 

Proceeding, use the product rule (or equivalently, integration by parts) to compute the 
differential 

 ( )d wy y dw wdy= +  (3) 

and subtract this equation from Eq. (2) to get 

 dg u dx y dw= −  (4) 

where I have introduced the Legendre-transformed function g f wy≡ − . Since we are taking 
differentials of x and w, we can take those two quantities as the independent variables of the new 
function, ( , )g x w . 

To summarize, we have done a Legendre transformation from an original function ( , )f x y  to 
a new function ( , )g x w  by switching from variable y to its conjugate variable w. Of course, one 
could instead switch x to u to obtain ( , )h u y  or one could switch both independent variables to 
get ( , )k u w . We see therefore that for two variables, there are 4 possible variants on the function. 
To make contact with thermodynamics, we might call these various functions the potentials. If 
instead we have 3 independent variables, there are 8 different potentials, or in general there are 
2n  potentials for a function of n independent variables, since each variable can be represented by 
either member of a conjugate pair. 



Example 1: Legendre transform from the Lagrangian L to the Hamiltonian H 

Suppose we have a mechanical system with a single generalized coordinate q and 
corresponding velocity   !q . Then the Lagrangian is defined as the difference between the kinetic 
and potential energies,    L(q, !q) ! K "U . We wish to transform to a new function ( , )H q p  where 
p is the momentum. To apply the formalism developed above, we merely have to make a table of 
equivalences: 

 

   

f ! L  (the original function)

x ! q  (the variable we are not switching)

y ! !q  (the variable to be switched)

w ! " f
"y

#
$%

&
'( x

= "L
" !q

#
$%

&
'( q

! p  (the conjugate of the switched variable)

 

where the last equality is the definition of the canonical momentum. For example, if q is the 
ordinary one-dimensional position x of a particle of mass m, so that   !q =!  is the velocity and 

21
2K mυ=  is the kinetic energy, then 

 
  

!L
! !q

"
#$

%
&' q

= !K
!(

"
#$

%
&' x

= m( = p , (5) 

noting that, because potential energy U is conservative, it cannot be a function of the velocity but 
only of the position. Anyhow, returning to our table of equivalences, the transformed function is 

   g ! f " wy = L" p !q  (6) 

which defines the negative of the Hamiltonian ( , )H q p . We take the negative so that H can be 
conveniently related to the energy. For the simple example above, 

 
   
p !q ! L = (m")(")! 1

2
m"2 !U( ) = K +U = H  (7) 

so that the Hamiltonian in this case is the total energy of the system. 
  



Example 2: Legendre transform from internal energy U to enthalpy H 

Suppose we have a system (such as a fixed quantity of gas) for which we have chosen the 
independent variables to be the entropy S and volume V. Then according to the thermodynamic 
identity, 

 dU T dS PdV= −  (8) 

where the temperature T and pressure P are therefore the variables conjugate to the entropy and 
volume, respectively. We wish to transform from ( , )U S V  to a new thermodynamic potential 
( , )H S P . We again construct a table of equivalences: 

 

  (the original function)

  (the variable we are not switching)

 (the conjugate of the unswitched variable)

  (the variable to be switched)

y V

Sx

f U

x S

f U
u T

x S

y V

f U
w P

y V

≡
≡

∂ ∂⎛ ⎞ ⎛ ⎞≡ = =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
≡

⎛ ⎞∂ ∂⎛ ⎞≡ = = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
  (the conjugate of the switched variable)

 

where the partial derivatives of U were calculated from Eq. (8). The transformed function is 

 ( ) ( )( ) ( , )g f wy U P V U PV H S P≡ − = − − = + ≡ . (9) 

In accord with Eq. (4), its differential is 

 dH T dS V dP= + . (10) 

Formulas for the Gibbs free energy ( , )G T P  and the Helmholtz free energy ( , )F T V  can be 
similarly obtained. 
  



Graphical interpretation 

An alternative way to introduce the Legendre transform uses a graphical method. For 
simplicity, consider a function of a single variable, ( )f x . The slope of this function is 

/u df dx= . Figure 1 shows a point P at coordinate x on the graph of, as a specific example, the 
function 1( ) xf x e −= . The tangent line at P is drawn in red. Its intersection with the vertical axis 
of the graph defines the hypothesis of the blue triangle whose run has length x and whose rise 
(equal to the slope times the run) has height ux. Noting that ( )f x  is the height of point P above 
the x axis, then we see that the Legendre transform ( ) ( )g u f x ux= −  can be simply interpreted as 
the vertical intercept of the red slope line. 

For the specific function graphed in Fig. 1, we have 

 1 1 lnxdf
u e x u

dx
−= = ⇒ = +  (11) 

so that 

 ( ) ( ) (1 ln ) lng u f x xu u u u u u≡ − = − + = −  (12) 

which is graphed in Fig. 2. Note that (0)g  corresponds to min ( )f f= −∞  where the slope of f is 
zero, and that (1)g  corresponds to (1)f  where the slope of f is unity. In this particular example, 
( )f x  has positive slope u for all values of x and thus ( )g u  is undefined for negative u. 

This graphical approach emphasizes that the Legendre transform will be single-valued only 
for a convex function. That is, a line segment joining any two points on the graph of f cannot lie 
anywhere below the graph. (This definition holds for a function of any number of variables.) The 
function cannot have any inflection or saddle points. 
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Inverse Legendre transform 

According to Eq. (4), 

 
x

g
y

w

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 (13) 

and we find the inverse transform by adding Eq. (3) to (4) to get (2). To avoid the minus sign in 
this equation for y, the Legendre transform can alternatively be defined as g wy f≡ − , in which 
case the Legendre transform is its own inverse, since f wy g= − , rather than being the negative 
of its inverse. This opposite-sign alternative definition, which was used in connection with 
Eq. (6), has the advantage that it gives rise to the symmetric identity 

 f g wy+ =  (14) 

which in words says that the sum of a function and its Legendre transform equals the product of 
the conjugate pair of variables. It is worth re-emphasizing the dimensional consistency of this 
identity. Equation (14) is actually a function of either w or y but not both, because one variable 
implicitly depends on the other via a Legendre transform. 

Derivative relation for the Legendre transform 

Starting from 

 
x

f
g f wy f y

y

⎛ ⎞∂= − = − ⎜ ⎟∂⎝ ⎠
 (15) 

we see that 

 2
2 2

1
( , )

x x x

g f f f f
g x y y

y y y y y yy y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂= − = − ⇒ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (16) 

which gives another way to compute the Legendre transform g from the givens  f, x, and y. For 
the thermodynamic example given above, Eq. (16) becomes 

 2( , )
S

U
H S V V

V V

∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
. (17) 

We can check this relation for a monatomic ideal gas, in which case 3
2U PV= . For a reversible 

adiabatic compression, we know that 5/3PV k=  is a constant. Thus 

 5/33 5

2 2S

U
kV H PV

V
−⎛ ⎞ = ⇒ =⎜ ⎟⎝ ⎠

 (18) 

according to Eq. (17), which is indeed consistent with H U PV= + .  



Other applications in classical and statistical mechanics 

Consider a relativistic particle of mass m, so that its Hamiltonian is equal to the total energy 

 2 2 2 4( , ) ( )H q p p c m c U q= + +  (19) 

where p is the linear momentum of the particle, c is the speed of light, and U is the potential 
energy which only depends on the generalized coordinate q. The variable conjugate to p is the 
velocity   !q !"  and is equal to the slope of the Hamiltonian, 

 
2

2 2 2 4
q

H pc

p p c m c
υ ⎛ ⎞∂= =⎜ ⎟∂⎝ ⎠ +

 (20) 

where the first equality is alternatively recognized as one of Hamilton’s equations. One can 
straightforwardly invert this equation to obtain the familiar result p mγ υ=  where 

2 2 1/2(1 / )cγ υ −≡ − . The Legendre transform of H gives the Lagrangian, 

    L(q, !q) !" p # H = #$ #1mc2 #U (q)  (21) 

which is not equal to K U− . However, the Lagrange equation correctly gives /F dp dt=  where 
the force is /F dU dq= − . 
 

If k is the Boltzmann constant, one can define the dimensionless Helmholtz free energy as 

   !F ! F / kT  and the dimensionless entropy as    !S ! S / k . Then the fact that    !F(! ,V ) = !U " !S  
shows that internal energy U and reciprocal temperature 1/ kTβ ≡  are conjugate variables, in 
terms of which entropy is the Legendre transform of the free energy. The thermodynamic 
identity becomes   d !F =Ud! "#dV  which shows that volume V and the pressure-temperature 
ratio /P kTη ≡  are also conjugates. 
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