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The Context: A computational lab for the Paradigms

The class
I Covers same physics content as the junior-year Paradigms.

I 1 credit, meets 3 hours per week in-class, no homework.

I Uses pair programming, python with matplotlib and numpy.

I No example code provided to students: they Google for help.

I Begins with six weeks of electrostatics.

The students
I This was an elective course.

I We had 8 students this Fall.

I Most had previous computational course with visual python.
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Introduction
I Setting up integrals in electrostatics is challenging for students.

I These integrals are very different from what is taught in calculus.

V (~r) =

∫
k dq′

|~r −~r ′|
~E (~r) =

∫
k
~r −~r ′

|~r −~r ′|3
dq′

Conclusions
I “Chopping and adding”1 is made explicit in computation.

I Once you have written down an integral, the problem becomes easy.

1For more information, attend Corinne’s talk in this session one hour ago.
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Six weeks of electrostatics

Schedule (remember: 3 hours per week)

I Week 1: Potential of four point charges
I Writing functions in python.
I Visualizing a scalar field.

I Week 2-3: Potential of a square of surface charge
I Programming loops.
I Viewing integration as “chopping and adding.”

I Week 4-6: Electric field of a solid cylinder of charge
I Integrating a vector quantity.
I Using cylindrical coordinates.
I Visualizing a vector field.

For each project pairs of students...

I ... write down function on paper in math notation.

I ... write python function to evaluate the field.

I ... visualize the field.

I ... present their code to the class. 4 / 7



Week 2 and 3: Potential of a square of surface charge

I 1/2 hour writing down the integral on paper.

I Students struggled with getting dimensions correct (omitting ∆x∆y)

I Students struggled with creating loops.

I Ended with students presenting their code to the class.
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Students reported learning to name their variables with “physics” names.
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Week 2 and 3: Potential of a square of surface charge

Math solution

V (~r) =

∫ L/2

−L/2

∫ L/2

−L/2

kσdx ′dy ′√
(x − x ′)2 + (y − y ′)2 + z2

Student code (distance → dist)

(comments mine)

def V(x,y,z):

# distinction between r and r’

dx = 0.01

# limits of integration

dy = dx

# |r-r’|

v_total = 0

# a little bit of charge

for xp in numpy.arange(-length/2, length/2, dx):

x_dist = (x - xp)**2

for yp in numpy.arange(-length/2,length/2,dy):

y_dist = (y - yp)**2

z_dist = (z)**2

dist = (x_dist**2 + y_dist**2 + z_dist**2)**.5

v = k * sigma * dx**2 / dist

v_total += v

# add up the little bits of potential

return v_total
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Week 1: Potential of four point charges

I Ended with student presentations of their code.
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Students reported learning to “get the little parts done [and tested] first,”
and reported learning a variety of programming concepts

(if/else, arrays, meshgrid, etc.).
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Week 4-6: Electric field of solid cylinder of charge

I About 1 1/2 hours writing down the integral on paper.

I Students struggled with cylindrical coordinates.

I Students struggled with integrating a vector quantity.

I Ended with students studying and presenting the code of another pair.
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Week 4-6: Electric field of solid cylinder of charge

Ex(~r) =

∫ L/2

−L/2

∫ 2π

0

∫ R

0
kρ

x − r ′ cosφ′(√
r2 + r ′2 − 2rr ′ cosφ′ + (z − z ′)2

)3 r ′dr ′dφ′dz ′
Student code (I cut a print statement)
def E_x(x,y,z): # Cartesian coordinates for position, computes Ex

dr_p = 0.01

E_x = 0

r_p = 0

r = (x**2 + y**2)**(1/2) # Computes cylindrical r coordinate (mixed coordinates)

dphi_p = np.pi/50

phi_p = 0

dz_p = 0.01

z_p = -length/2 # Uses while loops rather than for loops...

while z_p < length/2: # ...this scatters the limits of integration

while phi_p < 2*np.pi:

while r_p < radius:

r_minus_r_p = (r**2 + r_p**2 - 2 * r * r_p * np.cos(phi_p) + (z - z_p)**2)**(1/2)

dE_x = (((x - r_p * np.cos(phi_p))*r_p)* dr_p * dphi_p * dz_p) / r_minus_r_p**3

E_x = E_x + dE_x

r_p = r_p + dr_p # This pair oddly broke up the tiny chunk of volume

r_p = 0 # They entirely omit the charge density and k

phi_p = phi_p + dphi_p

phi_p = 0

z_p = z_p + dz_p

return E_x
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Week 4-6: Electric field of solid cylinder of charge

Math solution

Ex(~r) =

∫ L

−L

∫ 2π

0

∫ R

0
kρ

r cosφ− r ′ cosφ′

(r2 + r ′2 − 2rr ′ cosφ′ + (z − z ′)2)3/2
r ′dr ′dφ′dz ′

Student code (I broke a very long line of code)
def Ex(r,phi,z): # Cylindrical coordinates for position, find Ex

exfield = 0 # They entirely omit the charge density and k

for rp in np.arange(0,R,drp): # Very oddly broke up the tiny chunk of volume

for phip in np.arange(0,2*np.pi,dphip):

for zp in np.arange(-L,L,dzp):

exfield = exfield + ((rp*r*np.cos(phi)-rp**2*np.cos(phip))/

(r**2+rp**1-2*r*rp*np.cos(phi-phip)+(z-zp)**2)**(3/2))*drp*dphip*dzp

return exfield
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