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ABSTRACT 
 
 
 

If a cylinder is capped off by a sliding piston, we have a 
situation analogous to a mass on a spring. With suitable 
idealizations1 the mass on the spring is undamped and it 
will oscillate forever if initially displaced from 
equilibrium. With other suitable idealizations2 will the 
piston similarly oscillate forever if initially displaced? 
No! Unlike the solid bonds inside a spring, the gas 
molecules are mobile and so the analog is not exact. In 
fact, the motion of a piston in a gas-filled cylinder is 
always damped. However, the damping is weak and so 
the frequency of oscillation in a Rüchardt experiment 
closely approximates the undamped frequency. 
 
 
1The mass hangs vertically in vacuum from a Hookean 
spring attached to a rigid support. 
 
2The piston has no friction with the cylinder; the gas is 
ideal with no viscosity or turbulence; there is vacuum on 
the other side of the piston; and the piston and cylinder 
have zero thermal conductivity and heat capacity. 
  



SETUP 
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The bulk of the gas has time-varying pressure P, absolute 
temperature T, and volume V = Ax. However, the gas 

atoms next to the piston (occupying the hatched slice of 
negligible volume compared to V) exert dynamic pressure 

  !P  on the piston. 



DYNAMIC PRESSURE 

 

 
 

A gas atom of mass µ and upward velocity u makes an 
elastic collision with the piston of mass m and upward 

velocity υ, where  m >> µ  and  u >>υ . 
 
 

kinetic theory 
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R.P. Bauman and H.L. Cockerham, “Pressure of an ideal 
gas on a moving piston,” Am. J. Phys. 37, 675 (1969) 



COUPLED EQUATIONS OF MOTION 

 
 

Newton’s second law (N2L) for the piston 
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first law of thermodynamics (T1L) for the gas 
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Solve them simultaneously for x(t) and T (t) . 
  



NUMERICAL SOLUTION 
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given

Ti = 300 K

A = 10 cm2

m = 10 kg
M = 83.8 g/mol
xi = 1 m
υi = −2 m/s

derived
Pi = mg / A = 9.8 kPa
n = mgxi / RTi = 0.0393 mol
xf = 1.08 m
Tf = 324 K
Sf = 64.1 mJ/K



ENTROPY CHANGE 

 

 
 

The increase in S confirms that the damping is irreversible. 
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TdS = dU + PdV ⇒ S = 3
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nR ln T
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UNDERDAMPED OSCILLATOR MODEL 

 

  x(t) = xf − Xe−bt /2m sin(ω t +φ)  
 
 

Rüchardt prediction 
  
ω =

γ Pf A2

mVf
=

5nRTf

3mxf
2 ≈ 3.89 rad/s  

 

damping    −bυ = ( !P − P)A⇒  

  
b = Pf A

8M
πRTf

= n
xf

8MRTf
π

≈ 0.872 kg/s  

 
get X = 0.522 m  and φ = 0.157 rad  from fitting x and dx / dt  to xi and υi 



 
 

In excellent agreement with numerical solution of the coupled equations. 
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FINAL COMPRESSION RATIO 
What is hf after the oscillations have died away 
when mweight is suddenly placed on the piston? 
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substitute N2L:  PiA = mpistong  and  PfA = (mpiston +mweight )g  
 

into T1L:  32 PiAhi + (mpiston +mweight )ghi =
3
2 PfAhf + (mpiston +mweight )ghf  

 

to get  hf
hi

= 1− 0.6
1+mpiston /mweight

 

 
so that one cannot compress the gas to less than 40% of its initial volume even if 

the added weight is infinite! 
 

Contrast that with a reversible adiabatic compression described by 
Pihi5/3 = Pfhf5/3  so that hf → 0  when the added weight (and hence the final 

pressure) is infinite. 
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