Damped Oscillations of a Free Piston
in a Gas-Filled Cylinder

Carl E. Mungan

Physics Department
United States Naval Academy, Annapolis, MD



ABSTRACT

If a cylinder is capped off by a sliding piston, we have a
situation analogous to a mass on a spring. With suitable
idealizations! the mass on the spring is undamped and it
will oscillate forever if initially displaced from
equilibrium. With other suitable idealizations?> will the
piston similarly oscillate forever if initially displaced?
No! Unlike the solid bonds inside a spring, the gas
molecules are mobile and so the analog is not exact. In
fact, the motion of a piston in a gas-filled cylinder is
always damped. However, the damping is weak and so
the frequency of oscillation in a Riichardt experiment
closely approximates the undamped frequency.

I'The mass hangs vertically in vacuum from a Hookean
spring attached to a rigid support.

’The piston has no friction with the cylinder; the gas is
ideal with no viscosity or turbulence; there is vacuum on
the other side of the piston; and the piston and cylinder
have zero thermal conductivity and heat capacity.
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The bulk of the gas has time-varying pressure P, absolute
temperature 7, and volume V = Ax. However, the gas
atoms next to the piston (occupying the hatched slice of
negligible volume compared to V) exert dynamic pressure
P on the piston.



DYNAMIC PRESSURE
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A gas atom of mass 1 and upward velocity # makes an
elastic collision with the piston of mass m and upward
velocity v, where m>> u and u>>v.
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COUPLED EQUATIONS OF MOTION

Newton’s second law (N2L) for the piston
2
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first law of thermodynamics (T1L) for the gas
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Solve them simultaneously for x(¢) and 7'(¢).




NUMERICAL SOLUTION

given derived
I;=300 K P=mg/A=98kPa
A=10 cm® n=mgx;/ RT; =0.0393 mol
m=10 kg x;=1.08 m
M =838 g/imol T;=324 K
x;=1m S¢ =64.1 mJ/K
I v; =-2 m/s
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ENTROPY CHANGE
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The increase in S confirms that the damping is irreversible.



UNDERDAMPED OSCILLATOR MODEL

x(t)=x;— Xe """ sin(wt + ¢)

P.A*>  [5#RT
Riichardt prediction @ = e i e 8 3.89 rad/s
mV. 3mx§
~ M 8 MRT,
damping —bv = (P—P)A=> b= P4 8M__ n N £ ~0.872 ke/s
TRT:  x; T

get X =0.522 m and ¢ =0.157 rad from fitting x and dx/dt to x; and v




L t(s)

In excellent agreement with numerical solution of the coupled equations.



FINAL COMPRESSION RATIO

What is h¢ after the oscillations have died away
when my.eign 18 sSuddenly placed on the piston?
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substitute N2L: PA = Myiston8 and PA= (mpiston + mweight)g

into T1L: %PiAhi + (mpiSton + Myeight )gh, = %})fAhf + (mpiston T Myeight )8h
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so that one cannot compress the gas to less than 40% of its initial volume even if
the added weight is infinite!

Contrast that with a reversible adiabatic compression described by
Pk = P.hX” so that hy — 0 when the added weight (and hence the final
pressure) is infinite.
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