

Do we make students do too much or too little? A cognitive load study

Diego Valente and Xian Wu

Department of Physics, University of Connecticut

July 23 – 2019 AAPT Summer Meeting

Motivation

- 3 introductory physics course sequences at UConn are undergoing a major transformation (all calculus-based)
- Many learning interventions, including labs, demos, problemsolving tutorials, short quizzes are either in development or have recently been developed
- Quality control:
 - Evaluation of teaching (for instructors and TAs)
 - Learning outcomes (concept inventories and conventional exams)
 - Evaluation of learning intervention: cognitive load theory

Cognitive Load Theory

Usage of working memory resources during problem solving

 Three discrete categories: Intrinsic (ICL), Extraneous (ECL), and Germane cognitive loads (GCL)

Measuring Cognitive Load

Ways of measuring cognitive load:

- Unidimensional methods: physiological parameter measurements and dual-task estimation
- A differentiated method: self-reporting questionnaires with Likert-scale items designated to specific cognitive load categories:
 - "difficulty of the content": ICL
 - "difficulty to learn with the material presented": ECL
 - "concentration/mental effort during learning": GCL
 - We adopted the survey designed and validated by Klepsch et al. (2017)

The 2019 Spring Study

- A calculus-based intro-physics course with 69 students (most are life-science majors) enrolled
- A tutorial-based teaching approach was facilitated when possible
- Four tutorials were administered with the questionnaires:
 - Center of Mass
 - Torque and Rotation
 - Angular Momentum
 - Temperature and Heat
- The cognitive load surveys were handed to students at the end of the classes with tutorials when time permitted; students completed the surveys in class.

The Cognitive Load Survey

Type of load	Item	Cronbach's alphas
ICL	1. For this task, many things needed to be kept in mind simultaneously.	0.790*
	2. This task was very complex .	
GCL	3. I made an effort , not only to understand several details, but to understand the overall context.	0.752 (0.816* excluding item#5)
	4. My point while dealing with the task was to understand everything correct.	
	5. The learning task consisted of elements supporting my comprehension of the task.	
ECL	6. During this task, it was exhausting to find the important information.	0.826
	7. The design of this task was very inconvenient for learning.	
	8. During this task, it was difficult to recognize and link the crucial information.	

*Cronbach's alpha with two items was adjusted by the Spearman-Brown Prophecy formula to address the item number difference

Initial Reflections

- Challenges to be faced in measuring three aspects of cognitive load in a differentiated way:
 - Students can differentiate the content and the representation of a task, but it is hard to expect them to report their feelings toward these two aspects separately
 - GCL items are measuring motivation more than the actual effort spent toward learning (for self-reporting items only)
 - Lack of clear theoretical boundaries between ICL, ECL, and GCL
- The items of the cognitive load survey need to be further polished

Future Directions

- Interviewing (orally or in writing) students on how they consider each survey item related to a specific learning intervention
- More data is needed: we will use the cognitive load survey to assess more learning interventions
- Measuring learning outcomes (i.e., pre/posttest, clicker questions, exams, etc.) to get more objective information on how much students learn
- Designing an ICL/ECL-controlled experiment to possibly decouple these two categories (Challenging)