Improved Gay-Lussac Experiment Considering Added Volumes

Joel D. Krehbiel and Nelson Kilmer Hesston College, Kansas

Joel.krehbiel@hesston.edu

AAPT Conference, Provo, UT July 22, 2019

*Work Published in *The Physics Teacher*. 57: 21-25, 2019.

Gay-Lussac's Experiment

- Place a flask in a water bath
- Measure
 - Temperature (*T*) of the bath
 - Pressure (P) in the flask
- Repeat for different temperature water baths
- Since *PV=nRT*, both should increase proportionally
- A best fit line can be used to calculate absolute zero

Typical Data Overestimates Absolute Zero

- *K:* Difference in Celsius and Kelvin Temperature scales
- *K* = *b/m*
- Here: *K* = 304°C
- Percent Error: 11.3%

Two-volume theory

Ideal Gas Law: $P = P_1 = \frac{n_1 R T_1}{V_1} = P_2 = \frac{n_2 R T_2}{V_2}$ Total moles:

$$n = n_1 + n_2$$

So

 $n_2 = n - n_1$

$$n_{1} = \frac{n}{1 + \frac{V_{2}}{V_{1}} \frac{T_{1}}{T_{2}}}$$
$$P = \frac{nRT_{1}}{V_{1} + V_{2} \frac{T_{1}}{T_{2}}}$$

Modifications to Experiment

est fit to two-volume equation

- Measure air temperature: T_{2C}
- Determine volumes of flasks and tubing $(V_1, V_2, V_T = V_1 + V_2)$
- Enter a new best-fit line in data collection software

$$T_{1C} = \frac{P}{A - \frac{V_2}{V_1} \frac{P}{T_{2C} + K}} - K$$

Best Fit parameters: A and K

Slope Correction (K = b/m)

• Measure air temperature: T_{2C}

 $P_{,,} V_{,,} n_{,,} T_{,}$

 P_{I}, V_{I}

- Determine volumes of flasks and tubing $(V_1, V_2, V_T = V_1 + V_2)$
- Measure pressure $P_1 = P_{air}$ at air temperature
- Best to center temperature measurements around T_{2C}

$$K = \frac{P_{air}}{\frac{dP}{dT} \left(\frac{V_T}{V_1}\right)} - T_{2C}$$

Volumes of different flasks

mined by weighing a illed with water

 $V_2 = 4.5 \text{ ml}$

 $V_1 = 30 \text{ ml}$ $V_1 = 40 \text{ ml}$ $V_1 = 57 \text{ ml}$ $V_2/V_1 = 15\%$ $V_2/V_1 = 11.25\%$ $V_2/V_1 = 7.9\%$ $V_2/V_1 = 3.2\%$

Representative Data – Curve Fit

 V_2/V_1 =11.25%, T_{2C} = 22.5°C, P_{air} = 97.75 kPa

Representative Data – Corrected Slope

 V_2/V_1 =11.25%, T_{2C} = 22.5°C, P_{air} = 97.75 kPa

Student Results

Estimate of Absolute Zero versus Added Volume

Conclusions

- Error in Gay-Lussac experiment due to volume of tubing
- New two-volume theory developed
- This method provides several benefits
 - Errors reduced to less than 0.70% on average
 - Significant learning opportunity
- Some disadvantages
 - Volumes must be known
 - An equation must be defined in the software
 - Data should be centered on room temperature for slope correction

