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The Global Positioning System (GPS) provides a superb opportunity to introduce

relativity concepts to undergraduate students, including non-physics majors. Fa-

miliarity with the numerous applications of GPS motivates students to understand

relativity. A few fundamental principles need to be introduced, including the postu-

lates of special relativity and the universality of free fall. Then a series of thought

experiments leads to the breakdown of simultaneity, the Sagnac effect, the first-order

Doppler effect, gravitational frequency shifts, and time dilation. This article presents

this chain of thought and explains the essential role of special and general relativity

in the GPS.

I. INTRODUCTION

This paper develops a series of thought experiments based on a few fundamental relativity

principles, and discusses how the predicted effects are incorporated into the GPS. Important

relativistic effects on GPS satellite clocks include gravitational frequency shifts and time

dilation. These effects are so large that if not accounted for, the system would not be effective

for navigation. Reference clocks on earth’s geoid are similarly influenced by time dilation

(due to earth’s rotation) and gravitational frequency shifts, relative to clocks at infinity.

The frequency differences between clocks in orbit, and reference clocks on earth’s surface,

are very important in the GPS. Constancy of the speed of light is essential for navigation

using GPS. This principle also leads directly to the relativity of simultaneity and to the

Sagnac effect, that must be accounted for when synchronizing clocks in the neighborhood of
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earth or comparing clocks that are thousands of km apart on earth’s surface but that have

one or more GPS satellites in view at the same time. The relativity of simultaneity, the

constancy of c, and the first-order Doppler effect are intimately related.

In the next section, three important relativity principles are described. Navigation based

on the constancy of the speed of light, and the Sagnac effect, are discussed in Sect. III. Sect.

IV develops the relativity of simultaneity from the constancy of c, obtains the first order

correction to the time component of the Lorentz transformations, and relates the Sagnac

effect to the relativity of simultaneity. In Sect. V the first-order Doppler effect is derived

from the time transformation, and this, together with the weak equivalence principle, is used

in Sect. VI to derive the gravitational frequency shift. Time dilation is derived in Sect. VII

from the constancy of the speed of light. Sect. VIII discusses some additional implications

of relativity in the GPS.

II. RELATIVITY PRINCIPLES

The postulates of the special theory of relativity may be stated as follows:

1. The laws of physics have the same form in all inertial reference frames.

2. The speed of light c is a constant independent of the motion of the source.

The third principle that is required is the weak principle of equivalence, or the universality

of free fall. This can be stated as:

3. Over a small region of space and time, it is impossible to distinguish between a

gravitational field due to mass, and a fictitious gravitational field due to acceleration.

In the GPS, the law of inertia holds to a high degree of approximation in a freely-falling,

locally inertial frame whose origin is attached to the center of the earth but which is not

rotating. This is called the “Earth-Centered Inertial,” or ECI frame. The significance of

this is that in such a reference frame, the speed of light, c = 299792458 m/s, is essentially

constant even though the earth is accelerated towards the sun. In the earth-centered earth-

fixed rotating reference frame (the “ECEF” frame), light travels in a spiral path and clock

synchronization becomes problematic because of the Sagnac effect. Willingness on the part

of the student to view GPS navigation from a local inertial frame is an important step in

understanding GPS.

If an elevator accelerates upwards, there is an induced gravitational field of strength
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FIG. 1: Navigation in the GPS is based on constancy of the speed of electromagnetic signals.

equal to, but opposite to, the acceleration. The true gravitational field and the induced

gravitational field can be superposed vectorially. If the elevator should fall freely, the induced

acceleration is upwards and exactly cancels the true gravitational field so that the effective

field strength in the freely falling frame vanishes. As the earth falls towards the sun, there is

an induced gravitational field that is equal and opposite to the true gravitational field due

to the sun so that at the center of mass of earth, the net gravitation field strength is zero.

This is important in the GPS because it means that the net effect of the sun (and other

solar system bodies) comes in only through tidal forces and tidal gravitational potentials.

The effect on GPS clocks is due to the resulting tidal potential and is negligible. Detailed

study of how this comes about shows that the relativity of simultaneity plays a crucial role

in cancelling out the gravitational field strengths at earth’s center due to other solar system

bodies.
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III. CONSTANCY OF THE SPEED OF LIGHT

A. Navigation equations

Figure 1 illustrates how navigation in the GPS is performed, based on the constancy of

c. Atomic clocks in the satellites are synchronized in the underlying inertial frame (ECI)

frame. Time signals from at least four satellites are received at the time and position

{t, r}. Messages within the signals provide information about the time and position of the

transmission events, {tj , rj}, with j = 1, 2, 3, 4. The four equations

c(t − tj) = |r− rj|; j = 1, 2, 3, 4 (1)

express constancy of the speed of light. The equations are solved by the receiver to provide

position r and time t. This system of equations is nonlinear so the solution is nontrivial

and is usually performed by linearizing the equations, assuming an approximate position

(e.g., the center of earth or the last best known position) and solving by iteration. An

error of 3 nanoseconds (ns) in time would correspond to a position error of about 1 meter.

In practice the error in the solution for time at the receiver is typically no more than a

dozen nanoseconds or so. Most hand-held receivers cannot provide time to the user with

such accuracy. Time in the GPS is described as “coordinate time,” time of a network of

synchronized clocks that would be established using constancy of the speed of light in the

ECI reference frame.

In practice navigation is more complicated, as corrections for propagation delay due to

electrons in the ionosphere, and water vapor in the troposphere, may be quite important.

Receivers with more than four channels are commonplace; this provides an opportunity for

reduction of navigation errors by averaging. These issues have nothing to do with relativity,

however.

B. Sagnac effect

The navigation equations cannot be written as they are in Eq. (1), in the ECEF (Earth-

Centered, Earth-Fixed) reference frame. During propagation of the signal from transmitter

to receiver, the receiver most likely moves. Even if the receiver is at rest on earth’s surface,

earth rotation will carry the receiver into a different position while the signal propagates to
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the receiver. In the rotating frame one may account for this to sufficient accuracy by writing

the navigation equations as

t = tj +
|r(t) − rj |

c
=

|r(tj) + v × (t − tj) − rj|
c

(2)

where r(t) is the receiver position at time t and v is the velocity of the receiver at the time

of the transmission event. Since the receiver velocity is much smaller than c, the velocity

term is quite small and the equation can be solved by iteration. We define the range from

transmitter to receiver at the transmission time as

R = r(tj) − rj . (3)

Neglecting the velocity term entirely,

t = tj +
|r(tj) − rj |

c
= tj +

R

c
. (4)

This would give the signal’s time of arrival at the receiver if the receiver were fixed in inertial

space. Substituting this value of t back in to the right side of Eq. (2) and expanding to first

order in v,

t = tj +

√

R2 + 2R · v(t − tj)

c
≈ tj +

R

c
+

R · v
c2

. (5)

This is illustrated in Figure 2. If the receiver velocity is due only to earth rotation, then

v = ω × r(tj) . (6)

Then the Sagnac correction term can be rewritten as

∆tSagnac =
R · v

c2
=

2ω · A
c2

(7)

where A is the vector area given by

A =
1

2
r(tj) × R . (8)

The area A is the area swept out by the tip of a vector from the rotation axis to the signal

pulse as it propagates from transmitter to receiver. The dot product projects this area onto

a plane parallel to the equatorial plane. The correction is very important when comparing

atomic clocks at known earth-fixed locations, that have one or more GPS satellites in view

at the same time. The correction can be hundreds of ns. See Figure 3 for an illustration of

the “common-view” GPS geometry for comparison of atomic clocks that are separated by

large distances.
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FIG. 2: The Sagnac correction is proportional to the area swept out by a vector from the rotation

axis to the tip of the signal pulse, projected onto the equatorial plane.

FIG. 3: In the common-view method of time comparison, the Sagnac correction accounts for

receiver motion during signal propagation. Receiver positions on earth are presumed known.

IV. RELATIVITY OF SIMULTANEITY

We next consider a simple thought experiment, again based on the constancy of c, that

shows how the synchronization of clock networks depends on the state of motion of the
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FIG. 4: Analyzing a light signal that propagates along a moving rod leads to the relativity of

simultaneity.

observer. In Figure 4 we imagine a rod of length L = x in motion with speed v relative to

the “laboratory,” and observers at rest with respect to the rod. Let a light signal originating

from the left end of the rod, proceed to the right end. Calculate to first order in v the time

it takes for light to travel along the rod. (Length contraction is of second order so plays

no role here.) The observer in the “moving” frame, whose measurements we denote with

primes, would write

t′ = x/c . (9)

On the other hand, the observer in the laboratory sees that the light wave is catching up to

the front end of the rod with a relative speed c − v. It therefore requires a time (we do not

put primes on these measurements)

t =
x

c − v
=

x

c
(1 − v/c)−1 ≈ x

c
+

vx

c2
. (10)

Thus

t′ = t − vx

c2
. (11)

This expresses the breakdown of the concept of absolute simultaneity. If two observers are

in relative motion and attempt to synchronize their clocks by sending light signals out while

accounting for the universal propagation speed c, then even if the clocks at the left end of

the rods were set equal initially, the clocks at the right ends will not be synchronized when

the signal arrives. Considering a series of events along the x−axis that are synchronized in

the lab at t = 0, the “moving” observer would assert that, the farther the events are to the

right, the earlier they are.
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FIG. 5: The observer in the lab frame marks wave fronts simultaneously.

The relativity of simultaneity can be related directly to the Sagnac effect. Suppose that

observers on earth’s equator attempt to synchronize a system of clocks that are distributed

around the equator, by sending a light signal all the way once around with a system of

reflectors. The earth’s equatorial radius is a1 = 6378.137 m. The length of the equatorial

circumference is 2πa1 and to observers on the rotating earth it appears that it takes the time

2πa1/c for the signal to propagate once around. But to observers in a local, non-rotating

frame, the starting point moves a distance vt = ωa1t = ωa1(2πa1/c) during the process,

where ω = 7.291151467 × 10−5 rad/s is the angular velocity of earth’s rotation. Thus the

signal takes an extra amount of time

∆t =
vt

c
=

2ω

c2
πa2

1 =
2ωA

c2
(12)

to complete the circuit. The observers will disagree on the result of the synchronization

process. The discrepancy, obtained from Eq. (11) by substituting 2πa1 for x and ωa1 for v,

is

t − t′ =
2ωπa2

1

c2
, (13)

in agreement with Eq. (12).

Actually the entire discussion of the Sagnac effect can be skipped if the topic is not

of interest. It is included here because of its intimate connection with the relativity of

simultaneity, and its importance in the “common-view” method of comparison of remotely

locately clocks.

V. FIRST-ORDER DOPPLER EFFECT

The relativity of simultaneity leads directly to another first-order effect, the Doppler

effect. A thought experiment, illustrated in Figure 5, leads to the prediction of a frequency

redshift of a receding source. Imagine the observer in the laboratory frame sends out a
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series of electromagnetic pulses or cycles of frequency f . In the lab these will separated by

a wavelength λ = c/f and the wavelength can be measured by marking the positions of the

wavecrests simultaneously. However, to an observer moving with speed v in the direction of

propagation, these position marks appear to be too early, the farther they are to the right,

according to Eq. (11). For example, the wave crest numbered n = 1 in Figure 5 would appear

to be marked too early by an amount vλ/c2. The moving observer would have to allow this

much extra time before marking the wavefront in order to obtain a correct measurement of

wavelength in the moving frame. During this time, vλ/c2, the wavefront moves an addition

distance c(vλ/c2) = vλ/c. Therefore to the moving observer the wavelength is

λ′ = λ +
vλ

c
= λ(1 +

v

c
). (14)

The wavelength is increased, so the frequency is decreased. The fractional frequency shift is

∆f

f
= −v

c
. (15)

Thus the constancy of c, the relativity of simultaneity, and the first-order Doppler shift

are intimately connected. One can likewise construct arguments such that from any two of

these effects the third one follows. For example, given the first-order Doppler redshift of a

receding source, the constancy of the speed of light, and the relation c = fλ, it is easy to

invent a thought experiment to derive the relativity of simultaneity. The Doppler shift is

important in the derivation of the gravitational frequency shift, given in the next section.

VI. GRAVITATIONAL FREQUENCY SHIFT

A. Accelerating Rocket Experiment

Figure 6 pictures a thought experiment that, together with the principle of equivalence,

leads to the prediction of a gravitational frequency shift. A rocket with acceleration g

upwards contains a transmitter and a receiver at height L above the transmitter. We view

this accelerating rocket from a reference frame which is inertial. At the instant the rocket

starts up, the signal is transmitted. The time required to reach the receiver is essentially

t = L/c. But during the propagation of the signal to the receiver, the receiver picks up a

velocity

v = gt =
gL

c
. (16)
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FIG. 6: A signal rising up in an accelerating rocket will be redshifted; the Principle of Equivalence

then leads to a prediction of the gravitational frequency shift.

Then when the signal is detected the frequency must be the same as that detected by a

receiver moving at constant velocity, at the location of the receiver, but not accelerating. To

this receiver, the transmitter is a receding source and the frequency will be Doppler shifted

downwards:
∆f

f
= −v

c
= −gL

c2
. (17)

By the principle of equivalence, the physics in the accelerating rocket is the same as it would

be in a gravitational field of strength g. Thus the accelerated observer would attribute the

frequency change to the gravitational field, and then the product gL may be identified in

terms of the change in gravitational potential, ∆Φ = gL.

∆f

f
= −∆Φ

c2
. (18)

As the rocket continues to accelerate with constant velocity, (as long as the velocity does

not get too large), the frequency shift will remain constant so that to the observer in the

rocket, the frequency of the clock that is driving the transmitter, and that in this case is

lower down in the gravitational field, is beating more slowly. So comparing two clocks at
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different potentials, they should beat at different rates. The rate difference between a clock

at potential Φ + ∆Φ and one at Φ can be computed in terms of a fractional frequency shift

by reversing the sign in Eq. (18):
∆f

f
=

∆Φ

c2
. (19)

B. Gravitational frequency shifts in the GPS

Consider then two clocks, a reference clock at rest on the earth’s equator at radius a1,

and an atomic clock in orbit at radius r. The gravitational potential of the clock in orbit is,

to sufficient accuracy

Φ = −GM

r
(20)

where for earth, GM = 3.986004415 × 1014 m3/s2. The gravitational potential of the ref-

erence clock is affected slightly by the fact that the earth is not a perfect sphere, and a

contribution from the quadupole potential is needed:

Φ(r) = −GM

r
(1 − J2

a2
1

r2

(3z2 − r2)

2r2
) . (21)

where J1 = 1.0863× 10−3 is earth’s quadrupole moment coefficient. A clock on the equator

at z = 0 then has the gravitational potential

Φreference = −GM

a1

(1 +
J2

2
) . (22)

The total gravitational frequency shift of GPS satellite clocks is therefore

∆f

f
=

Φ − Φreference

c2
= −GM

c2r
− (−GM

a1c2
(1 +

J2

2
)) ≈ 5.288 × 10−10 . (23)

This is actually a huge effect. If not accounted for, in one day it could build up to a timing

error that would translate into a navigational error of 13.7 km. Good GPS satellite clocks

have instrinsic stabilities that allow them to keep time to within a few parts in 1014 after a

day. The gravitational frequency shift is thousands of times bigger than this.

VII. TIME DILATION

Another very important effect in the GPS is the relative slowing of moving clocks. In

Figure 7 is a diagram of a simple thought experiment, based again on the constancy of the
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FIG. 7: Thought experiment leading to time dilation.

speed of light, that leads to a prediction of this effect. Imagine an experiment in which the

“moving” observer lays a measuring rod of length L out along the y′−axis and transfers the

time from a clock at y′ = 0 to one at y′ = L by sending a light signal from the bottom of

the rod to the top. The time required is

t′ = L/c . (24)

On the other hand, in the view of the “lab” observer, the light signal pulse goes out along

the moving rod, so has an x−component of velocity equal to v. The light path follows the

hypotenuse of a triangle with speed c, so the vertical component of velocity is

cy =
√

c2 − v2 . (25)

Therefore it takes longer for the light to get to the end of the rod. The arrival time of the

signal at the end of the rod is

t =
L√

c2 − v2
. (26)

so the time of the “moving” clock at the top end of the rod, and the “rest” clock at the

same location are related by

t′ =

√

1 − v2

c2
t . (27)
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Thus, a clock moving relative to a system of synchronized clocks in an inertial frame beats

more slowly. The square root in Eq. (27) can be approximately expanded using the binomial

theorem:
√

1 − v2

c2
≈ 1 − 1

2

v2

c2
. (28)

In the GPS, satellite velocities are close to 4000 m/s, so the order of magnitude of the time

dilation effect is

−1

2

v2

c2
≈ −8.35 × 10−11 (29)

This is also a huge effect. A reference clock on earth’s equator is also in motion, but with

a smaller speed, of order 465 m/s. To obtain the fractional frequency difference between a

GPS satellite clock and a reference clock on the equator, we have to compute the difference:

∆f

f
= −1

2

v2

c2
− (−1

2

(ωa1)
2

c2
) = −8.228 × 10−11 . (30)

If not accounted for, this would build up to contribute a navigational error of order 2.13

km/day.

Because of these frequency offsets, it is best to view the GPS satellite constellation and

the reference clocks on the rotating earth from the point of view of the ECI frame. Reference

clocks at any location, and moving arbitrarily, are assumed to be synchronized so that they

read the same time as imaginary clocks at rest in the underlying inertial frame with which

they momentarily coincide. Any reference clock can be chosen to establish the rate, or the

length of the time unit. In practice, the ensemble of clocks at the U. S. Naval Observatory

is adopted as the standard. These clocks are not on the equator, but essentially beat at the

same rate as clocks on the equator. This is illustrated in Figure 8. The earth is slightly

flattened, due to its rotation. The polar radius is less than the equatorial radius. Clocks

on the surface of mean sea level that are closer to the equator beat more slowly due to

time dilation. But they are higher up in the gravitational field and beat faster due to

their greater gravitational potential. Together with the quadrupole potential, these effects

compensate to very high precision. The earth’s “geoid”–the surface at mean sea level–has

the remarkable property that clocks at rest anywhere on this surface all beat at the same

rate. Such reference clocks then all beat at the same rate. Corrections can be applied to

atomic clocks that are not on the geoid so that they effectively beat at the rate of clocks on

the geoid. (At NIST, the correction is -15.5 ns/day.)
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FIG. 8: Atomic clocks on earth’s geoid beat at equal rates due to compensating relativistic effects.

VIII. NET RELATIVISTIC FREQUENCY SHIFT

A. Factory Frequency Offset

Since time dilation and gravitational frequency shifts are small compared to unity, their

net contribution to the fractional frequency shift of a satellite clock, relative to one of the

reference clocks, is obtained by simple addition. Combining Eqs. (23) and (30), the sum is

∆f

f
=

(−GM
r

+ GM
a1

(1 + J2

2
))

c2
+

−1
2
v2 − (−1

2
(ωa1)

2)

c2
. (31)

There are thus a handful of relativistic effects, amounting to a total that is about 10,000

times too large to ignore.

The above expression is further modified by inserting the fact that the satellites are, to

a good approximation, in Keplerian orbits in which their energy is conserved. It won’t be

shown here, but the study of a Keplerian orbit results in the following expression for the

total energy per unit mass of the satellite

1

2
v2 − GM

r
= −GM

2a
, (32)
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where a = 26, 562 km is the designed semi-major axis of a GPS satellite orbit. Then the

velocity term in Eq. (31) can be eliminated in favor of r and a using Eq. (32), yielding the

final expression

∆f

f
= −2GM

c2

(1

r
− 1

a

)

− 3GM

2c2a
+

GM

c2a1

(1 +
J2

2
) +

1

2

(ωa1)
2

c2
. (33)

The contributions are thus separated into a constant part, plus a small term that vanishes

if the orbit is perfectly circular. The constant part is

−3GM

2c2a
+

GM

c2a1

(1 +
J2

2
) +

1

2

(ωa1)
2

c2
= 4.4647 × 10−10 . (34)

In the older satellites these terms were compensated by setting the atomic clock frequencies

down by this amount before launch–the so-called “factory frequency offset.” Atomic clocks

that have been recently launched are based on Rubidium atoms. These clock frequencies

may be bumped during launch so they are measured after orbit insertion and the necessary

frequency corrections are transmitted to the receivers in the navigation message.

B. Eccentricity Effect

The first term in Eq. (33) varies during the orbit. It is proportional to the orbit eccen-

tricity and can give rise to an error of as much as 75 ns if not accounted for. The early

satellites had limited computing power and the system was designed so that the receiver

would apply this correction to the transmitted time. Thus every receiver is supposed to con-

tain relativity software to apply this “eccentricity correction.” Nowadays the satellites have

plenty of computing capability and could easily apply this correction before transmitting

their time signals. It is thought that, in the Soviet Union’s GLONASS satellite system such

corrections are applied in the satellite processor.

C. Orbit Adjustment Effects

When a satellite reaches the end of its life and is decomissioned, some other spare satellite

in a parking orbit is placed into an appropriate slot so that the GPS system can continue

operations with its full complement of satellites. Currently there are 29 satellites in orbit; 24

is the number nominally used in operations. Suppose the orbit of a satellite were perfectly
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circular. Then in Eq. (34) there is only one term that depends on the orbit, the first term

that has the semi-major axis a in the denominator. If thrusters are fired so that a is changed

to a + δa, then the fractional frequency will change by the amount

δ
(∆f

f

)

= +
3GMδa

2c2a2
. (35)

For a typical altitude increase of 20 km, this change is

δ
(∆f

f

)

= 1.88 × 10−13 . (36)

This prediction works so well that when orbits are adjusted, the expected frequency shift

is anticipated; it is not necessary to wait several days while the new frequency is measured

from the ground, before placing the new satellite clock into operation.

IX. CONCLUSIONS

Relativistic effect in the GPS are far too large to ignore. Understanding these effects

is readily accessible to undergraduates; a small number of thought experiments based on

a few fundamental principles leads directly to correct predictions of these effects. It is

not necessary to introduce the fundamental scalar, or a metric tensor, in this elementary

treatment. Some things have been purposely glossed over, such as the possibility of Lorentz

contraction (it actually is not important; the GPS is a timing system.) More detail can be

found in the references.[1],[2] See Chapter 10 in Ref. [3].
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