
2020 USAPhO General Information 1

AAPT
AIP 2020

UNITED  STATES  PHYSICS  TEAM

USA Physics Olympiad Exam

Information about USAPhO Test

• This examination consists of two parts and six problems. Ordinarily, you will be given 90
minutes to complete Part A, take a 10-15 minute break, and return to complete Part B in 90
minutes.

You may choose to observe the above guideline if you’d like to practice for future USAPhO
tests.

• Ordinarily, you are allowed calculators, but they are not allowed to use symbolic math,
programming, or graphical features of these calculators. Calculators must not be shared and
their memory must be cleared of data and programs. Cell phones, smart watches, PDAs, or
cameras cannot be used during the exam or while the exam papers are present. Students are
not allowed to bring any tables, books, or collections of formulas.

You may choose to observe the above guideline if you’d like to practice for future USAPhO
tests.

Thank you for participating USAPhO this year under such extraordinary circumstances. We
hope that you and your family stay safe, and that you continue to encourage more students like
you to study physics and try out F = ma test hosted by AAPT.

We acknowledge the following people for their contributions to this year’s exam (in alphabetical order):

Ariel Amir, JiaJia Dong, Mark Eichenlaub, Abijith Krishnan, Kye W. Shi, and Mike Winer.
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Part A

Question A1

Braking up

An infinitely long wire with linear charge density −λ lies along the z-axis. An infinitely long
insulating cylindrical shell of radius a is concentric with the wire and can rotate freely about the
z-axis. The shell has moment of inertia per unit length I. Charge is uniformly distributed on the

shell, with surface charge density
λ

2πa
.

The system is immersed in an external magnetic field B0ẑ, and is initially at rest. Starting at
t = 0, the external magnetic field is slowly reduced to zero over a time T � a/c, where c is the
speed of light.

a. Find an expression of the final angular velocity ω of the cylinder in terms of the symbols given
and other constants.

b. You may be surprised that the expression you find above is not zero! However, the electric and
magnetic fields can have angular momentum. Analogous to the “regular” angular momentum
definition, the EM field angular momentum per unit volume at a displacement r from the axis
of rotation is:

L(r) = r× P(r).

P(r) is a vector analogous to momentum, given by

P(r) = α ·
(
E(r)×B(r)

)
.

where α is some proportionality constant. Find an expression for α in terms of given variables
and fundamental constants.
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Question A2

Swoosh!

In 1851, Léon Foucault built a pendulum 67 metres tall with a 28-kg weight. He connected it to the
top of the Panthéon in Paris with a bearing that enabled it to freely change its plane of oscillation.
Because of the Earth’s rotation, the plane of oscillation slowly moved over time: if we imagine
a large horizontal clock under the pendulum, if initially the oscillations went from “12” to “6”,
later on they would move to the “3-9” plane, for example, as shown in the figure below. Perhaps
surprisingly, the time it took the oscillations to go back to their original plane is longer than 12
hours. In this problem we will investigate why this is the case, and what the shape the pendulum
traces out.

Figure 1: Left: A schematic of Foucault’s pendulum. Right: The pendulum motion projected on a
horizontal plane in the rotating lab frame.

First, consider the case of a Foucault pendulum installed precisely at the North Pole, with
length l. We denote

√
g/l = ω. The angular velocity of the Earth is Ω.

John is an observer looking at the pendulum from a fixed point in space. At t = 0, he sees the
pendulum at position (A, 0) and with velocity (0, V ) in the x-y (horizontal) plane.

a. For John, what are the approximate equations describing the motion of the pendulum in the
x-y plane? You may assume that the amplitude of the oscillations is small. We define the
coordinates of the pendulum at rest as (0, 0).

b. What will the coordinates x, y in Jonh’s frame be at a later time t?

c. Ella, an observer resides at the North Pole, is also looking at the pendulum. What are the
coordinates, x̃(t) and ỹ(t), as observed by Ella? Assume that at time t = 0, the coordinate
systems of John’s and Ella’s overlap.

d. What is the speed of the pendulum bob observed by Ella at t = 0?

e. Find the initial conditions for A, V , such that as measured in Ella’s frame:

i. the pendulum passes precisely through its resting position.

ii. it has a “spike” at the points of maximal amplitude (see figure below) instead of a “rounded”
trajectory.
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Figure 2: Two possible trajectories with “spike”(left) and more “rounded” (right).

In a rotating frame, a fictitious force known as the Coriolis force acts on the particles. For
Foucault’s pendulum, the Coriolis force acts primarily in the horizontal plane, in a direction
perpendicular to the velocity of the mass in the Earth’s frame with magnitude:

F = 2mΩv · sin θ, (A2-1)

where m and v are the pendulum’s mass and its velocity, and θ the latitude (90◦ for the North
Pole). Note that when the velocity changes sign, so does the Coriolis force.

f. How long would it take for the plane of oscillation of Foucault’s pendulum to return to its initial
value in Paris, which has a latitude of about 49◦.
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Question A3

Spin Cycle

Cosmonaut Carla is preparing for the Intergalactic 5000 race. She practices for her race on her
handy race track of radius R, carrying a stopwatch with her. Her racecar maintains a constant
speed v during her practices. For this problem, you can assume that v > 0.1c, where c is the speed
of light.

a. How much time elapses on Carla’s stopwatch with each revolution?

Carla decides to do a fun experiment during her training. She places two stationary clocks
down: Clock A at the center of the race track, i.e. the origin; and Clock B at a point on the race
track denoted as (R, 0). She then begins her training.

For parts (b) through (d), we define Carla’s inertial reference frame (CIRF) as an inertial
reference frame in which Carla is momentarily at rest, and which has the same origin of coordinates
as the lab frame. Thus, CIRF is a new inertial frame each moment. The times on the clocks and
stopwatch are all calibrated such that they all read 0 in CIRF when she passes by Clock B for the
first time.

b. In the lab frame (the reference frame of the clocks, which are at rest), what is the offset between
Clock A and Clock B?

c. If Carla’s stopwatch measures an elapsed time τ , what does Clock A measure in CIRF?

d. If Carla’s stopwatch measures an elapsed time τ , what does Clock B measure in CIRF?
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Part B

Question B1

String Cheese

a. When a faucet is turned on, a stream of water flows down with initial speed v0 at the spout.
For this problem, we define y to be the vertical coordinate with its positive direction pointing
up.

Assuming the water speed is only affected by gravity as the water falls, find the speed of water
v(y) at height y. Define the zero of y such that the equation for v2 has only one term and find
y0, the height of the spout.

b. Assume that the stream of water falling from the faucet is cylindrically symmetric about a
vertical axis through the center of the stream. Also assume that the volume of water per unit
time exiting the spout is constant, and that the shape of the stream of water is constant over
time.

In this case, the radius r of the stream of water is a function of vertical position y. Let the
radius at the faucet be r0. Using your result from part (a), find r(y).

If r(y) is not constant, it implies that the water has some radial velocity during its fall, in
contradiction to our assumptions in part (a) that the motion is purely vertical. You may assume
throughout the problem that any such radial velocity is negligibly small.

c. The water-air interface has some surface tension, σ. The effect of surface tension is to change
the pressure in the stream according to the Young-Laplace equation,

∆P = σ

(
1

r
+

1

R

)
,

where ∆P is the difference in pressure between the stream and the atmosphere and R is the
radius of curvature of the vertical profile of the stream, visualized below. (R < 0 for the stream
of water; the radius of curvature would be positive only if the stream profile curved inwards.)

|R|

For this part of the problem, we assume that |R| � |r|, so that the curvature of the vertical
profile of the stream can be ignored. Also assume that water is incompressible.

Accounting for the pressure in the stream, find a new equation relating for r(y) in terms of
σ, r0, v0, and ρ, the density of water. You do not need to solve the equation for r.

d. After falling for some distance, the water stream usually breaks into smaller droplets. This
occurs because small random perturbations to the shape of the stream grow over time, eventually
breaking the stream into apart.
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For the rest of this problem we ignore the change in the radius of the stream due to changing
speed of the water, as considered earlier. Instead, we examine small random variations in the
radius of the stream.

Random variations can be broken down into a sum of sinusoidal variations in stream radius,
each with a different wavenumber k. We can analyze these different sinusoidal variations inde-
pendently.

Consider a stream of water whose radius obeys

r(y) = r0 +A cos(ky),

where A� r0 is the perturbation amplitude. To analyze such a stream, it is sufficient to consider
only the thickest and thinnest parts of the stream.

Accounting for both sources of curvature, find a condition on r0 and k such that the size of
perturbations increases with time.

r(y) |R(y)|
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Question B2

Mirror Mirror on the Wall

Consider a square room with side length L. The bottom wall of the room is a perfect mirror.* A
perfect monochromatic point source with wavelength λ is placed a distance d above the center of
the mirror, where λ� d� L.

mirror

point source

d

L

L

L
2

*Remember that the phase of light reflected by a mirror changes by 180◦.

a. On the right wall, an interference pattern emerges. What is the distance y between the bottom
corner and the closest bright fringe above it? Hint: you may assume λ� y � L as well.

b. You plan on running an experiment to determine λ in a room with L = 40 m, and you know
that λ is between 550 and 750 nm. You will measure d and y10 (the distance of the tenth fringe
from the corner) with the same ruler (with markings of 1 mm). At what d should you place the
point source to minimize your error in your λ measurement? Roughly what is that minimum
error?

c. Now suppose we place a transparent hemispherical shell of thickness s and index of refraction
n over the source such that all light from the source that directly strikes the right wall passes
through the shell, and all light from the source that strikes the mirror first does not pass through
the shell.

hemispherical shell

L
2

d

At what y is the fringe closest to the bottom-most corner now? (You may find it convenient to
use bxc, the largest integer below x.) What is the spacing between the fringes now? Ignore any
reflections or diffraction from the hemispherical shell.
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d. Now, suppose the hemispherical shell is removed, and we instead observe the interference pattern
on the top wall. To the nearest integer, what is the total number of fringes that appear on the
top wall? You may assume that d� L.
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Question B3

Real Expansion

Consider a “real” monatomic gas consisting of N atoms of negligible volume and mass m in equilib-
rium inside a closed cubical container of volume V . In this “real” gas, the attractive forces between
atoms is small but not negligible. Because these atoms have negligible volume, you can assume
that the atoms do not collide with each other for the entirety of the problem.

a. Consider an atom in the interior of this container of volume V . Suppose the potential energy of
the interaction is given by

u(r) =

0 r < d

−ε
(
d
r

)6
r ≥ d

where d � V 1/3 is the minimum allowed distance between two atoms. Assume the gas is
uniformly distributed within the container, what is the average potential energy of this atom?

Write your answer in terms of a′ =
2πd3ε

3
, N , and V .

b. What is the average potential energy of an atom near the boundary of the box? Assume that
there is no interaction between atoms near the boundary and the box itself.

c. Using Bernoulli’s law P + U + ρv2/2 = constant, with pressure P , potential energy density U ,
mass density ρ and fluid velocity v, what is the pressure at the boundary of the box? Assume
the interior pressure is given by the ideal gas law.

d. Assuming most atoms are in the interior of the box, what is the total energy of the atoms in
the box?

Now consider an insulated partitioned container with two sections, each of volume V . We fill
one side of the container with N atoms of this “real” gas at temperature T , which the other side
being a vacuum. We then quickly remove the partition and let the gas expand to fill the entirety
of the partitioned container. During this expansion, the energy of the gas remains unchanged.

e. What is the final temperature of the gas after the expansion?

f. What is the increase in the entropy of the universe as a result of the free expansion? Give your
answer to first order in a′N

V kBT .
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