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DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN

• Work Part A first. You have 90 minutes to complete all four problems. Each question is
worth 25 points. Do not look at Part B during this time.

• After you have completed Part A you may take a break.

• Then work Part B. You have 90 minutes to complete both problems. Each question is worth
50 points. Do not look at Part A during this time.

• Show all your work. Partial credit will be given. Do not write on the back of any page. Do
not write anything that you wish graded on the question sheets.

• Start each question on a new sheet of paper. Put your AAPT ID number, your name, the
question number and the page number/total pages for this problem, in the upper right hand
corner of each page. For example,

AAPT ID #

Doe, Jamie

A1 - 1/3

• A hand-held calculator may be used. Its memory must be cleared of data and programs. You
may use only the basic functions found on a simple scientific calculator. Calculators may not
be shared. Cell phones, PDA’s or cameras may not be used during the exam or while the
exam papers are present. You may not use any tables, books, or collections of formulas.

• Questions with the same point value are not necessarily of the same difficulty.

• In order to maintain exam security, do not communicate any information about
the questions (or their answers/solutions) on this contest until after April 15,
2016.

Possibly Useful Information. You may use this sheet for both parts of the exam.
g = 9.8 N/kg G = 6.67× 10−11 N ·m2/kg2

k = 1/4πϵ0 = 8.99× 109 N ·m2/C2 km = µ0/4π = 10−7 T ·m/A
c = 3.00× 108 m/s kB = 1.38× 10−23 J/K
NA = 6.02× 1023 (mol)−1 R = NAkB = 8.31 J/(mol ·K)
σ = 5.67× 10−8 J/(s ·m2 ·K4) e = 1.602× 10−19 C
1eV = 1.602× 10−19 J h = 6.63× 10−34 J · s = 4.14× 10−15 eV · s
me = 9.109× 10−31 kg = 0.511 MeV/c2 (1 + x)n ≈ 1 + nx for |x| ≪ 1
sin θ ≈ θ − 1

6θ
3 for |θ| ≪ 1 cos θ ≈ 1− 1

2θ
2 for |θ| ≪ 1

Copyright ©2016 American Association of Physics Teachers



2016 USA Physics Olympiad Exam Part A 3

Part A

Question A1

The Doppler effect for a source moving relative to a stationary observer is described by

f =
f0

1− (v/c) cos θ

where f is the frequency measured by the observer, f0 is the frequency emitted by the source, v is
the speed of the source, c is the wave speed, and θ is the angle between the source velocity and the
line between the source and observer. (Thus θ = 0 when the source is moving directly towards the
observer and θ = π when moving directly away.)

A sound source of constant frequency travels at a constant velocity past an observer, and the
observed frequency is plotted as a function of time:
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The experiment happens in room temperature air, so the speed of sound is 340 m/s.

a. What is the speed of the source?
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Solution

For θ = 0 we have
fa ≈ f0/(1− v/c)

and for θ = π,
fb = f0/(1 + v/c).

Read fa and fb off the early and late time portions of the graph and use

fa/fb = (1 + v/c)/(1− v/c)

giving an answer of v = 10.7 m/s.

Alternatively, we can see that v ≪ c and approximate

fa/fb ≈ 1 + 2v/c

which makes the calculation of v slightly faster. This is acceptable because the error terms
are of order (v/c)2 ∼ 0.1%.

b. What is the smallest distance between the source and the observer?

Solution

Let d be the (fixed) distance between the observer and the path of the source; let x be the
displacement along the path, with x = 0 at closest approach. Then for |x| ≪ d,

cos θ ≈ cot θ = x/d

so we have
f = f0/(1− (v/c)(x/d)) ≈ f0(1 + (v/c)(x/d)).

Taking the time derivative, and noting that x′ is simply v,

f ′ = f0(v
2/c)d

Therefore we can read f ′ off the center region of the graph. We still need to find f0, which we
can do using our result from part (a) or simply by averaging fa and fb, since v ≪ c, giving
f0 = 435 Hz and an answer of d = 17.8 m.

There’s also a nice trick to speed up this computation. Draw lines at the asymptotic values
and through the central data points. The two horizontal lines are 2f0(v/c) apart in frequency,
so the time between their intersections with the third line is simply 2d/v.
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Question A2

A simple integrated circuit device has two inputs, Va and Vb, and two outputs, Vo and Vg. The
inputs are effectively connected internally to a single resistor with effectively infinite resistance.
The outputs are effectively connected internally to a perfect source of emf E . The integrated circuit
is configured so that E = G(Va − Vb), where G is positive and very large. (In your answers below,
you may neglect terms suppressed by 1/G.) On the left is an internal schematic for the device; on
the right is the symbol that is used in circuit diagrams.

Va

Vb

Vo

Vg

a

b

o

g

a. Consider the following circuit. R1 = 8.2 kΩ and R2 = 560 Ω are two resistors. Terminal g
and the negative side of Vin are connected to ground, so both are at a potential of 0 volts.
Determine the ratio Vout/Vin.

a

b

o

g
R1

R2

Vout

Vin

Solution

Since terminal g is grounded, Vg = 0 and Va = Vin, so Vout = G(Vin − Vb). No current runs
between a and b, so any current through R1 also flows through R2. Then Ohm’s law gives

Vb

R2
=

Vout

R1 +R2
⇒ Vout = G

(
Vin − Vout

R2

R1 +R2

)
and solving for Vout gives

Vout =
Vin

1
G + R2

R1+R2

.

Since 1/G is negligibly small, our final answer is

Vout

Vin
≈ R1 +R2

R2
.

This circuit is an amplifier with feedback. In case you’re wondering, the four-terminal circuit
component used in this problem is called an operational amplifier, or “op amp”.

b. Consider the circuit below, where all four resistors have resistance R. Note that the positions
of terminals a and b have been switched. Determine Vout in terms of V1, V2, and R.
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b

a

o

g

R

R

Vout
V1

V2

R

R

Solution

If we handled this part like part (a), accounting explicitly for G, then we would run into some
complicated algebra. Instead, we notice that in the previous part, the solution for Vout sets
Va ≈ Vb. The reason is that the circuit amplifies Va −Vb by the huge factor G, but its output
isn’t huge, which means the circuit has to drive Va − Vb to zero. Concretely, this occurs by
negative feedback: if one slightly increases Va, then one will dramatically increase Vo, which
would then cause Vb to increase as well. Thus, Va ≈ Vb is a stable equilibrium.

In general, such negative feedback will occur when the output is connected back to the input
b. (If the output is instead connected back to a, then we get positive feedback instead, and
the circuit is unstable.) And in this circuit, the output is indeed connected back to b, so we
can simply assume Va ≈ Vb.

Now again Vg = 0, and if current I flows through the bottom resistor (below the a and g
terminals) then Va = V2/2, since the voltage drop across the bottom two resistors is equal.
Similarly, the voltage drop across the top two resistors is equal, so V1 + Vout = 2Vb. Then

Vout = 2Vb − V1 ≈ 2Va − V1 = V2 − V1.

This circuit is a subtractor.

c. Now consider a circuit with a capacitor C and a resistor R with time constant RC = τ , where
Vin(t) smoothly varies in time. Determine Vout in terms of Vin(t) and τ .

b

a

o

g

R

Vout

Vin

C

Solution

Once again, this circuit is set up with negative feedback, which drives Vb ≈ Va = 0. Then the
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capacitor charge and current satisfy

Q = CVin, Q̇ = −Vout

R

where the second result follows from Ohm’s law. Then

Vout

R
= −C

dVin

dt
⇒ Vout = −τ

dVin

dt
.

This circuit is a differentiator.
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Question A3

Throughout this problem the inertial rest frame of the rod will be referred to as the rod’s frame,
while the inertial frame of the cylinder will be referred to as the cylinder’s frame.

A rod is traveling at a constant speed of v = 4
5c to the right relative to a hollow cylinder. The

rod passes through the cylinder, and then out the other side. The left end of the rod aligns with
the left end of the cylinder at time t = 0 and x = 0 in the cylinder’s frame and time t′ = 0 and
x′ = 0 in the rod’s frame.

The left end of the rod aligns with the left end of the cylinder at the same time as the right
end of the rod aligns with the right end of the cylinder in the cylinder’s frame; in this reference
frame the length of the cylinder is 15 m.

For the following, sketch accurate, scale diagrams of the motions of the ends of the rod and the
cylinder on the graphs provided. The horizontal axis corresponds to x, the vertical axis corresponds
to ct, where c is the speed of light. Both the vertical and horizontal gridlines have 5.0 meter spacing.

a. Sketch the world lines of the left end of the rod (RL), left end of the cylinder (CL), right end
of the rod (RR), and right end of the cylinder (CR) in the cylinder’s frame.

b. Do the same in the rod’s frame.

c. On both diagrams clearly indicate the following four events by the letters A, B, C, and D.

A: The left end of the rod is at the same point as the left end of the cylinder

B: The right end of the rod is at the same point as the right end of the cylinder

C: The left end of the rod is at the same point as the right end of the cylinder

D: The right end of the rod is at the same point as the left end of the cylinder

d. At event B a small particle P is emitted that travels to the left at a constant speed vP = 4
5c

in the cylinder’s frame.

i. Sketch the world line of P in the cylinder’s frame.

ii. Sketch the world line of P in the rod’s frame.

e. Now consider the following in the cylinder’s frame. The right end of the rod stops instanta-
neously at event B and emits a flash of light, and the left end of the rod stops instantaneously
when the light reaches it. Determine the final length of the rod after it has stopped. You can
assume the rod compresses uniformly with no other deformation.

Any computation that you do must be shown on a separate sheet of paper, and not on the
graphs. Graphical work that does not have supporting computation might not receive full credit.

Solution

The graphs are shown below, where the yellow line is the particle P and the green line is the
flash of light. Solutions that used Galilean relativity received partial credit, as long as they were
self-consistent. The final length of the rod is simply the distance between the line CR and the
intersection of RL and the green line, i.e. 25/3 m. There’s no need to apply length contraction, as
we’re already in the rest frame of the rod at this point. Nonetheless, the way we have chosen to
stop the rod has squeezed it shorter.
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The Cylinder’s Frame

x

ct
CL CR RL

RR
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The Rod’s Frame

x′

ct′
RL RR

CL
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x
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Question A4

The flow of heat through a material can be described via the thermal conductivity κ. If the two faces
of a slab of material with thermal conductivity κ, area A, and thickness d are held at temperatures
differing by ∆T , the thermal power P transferred through the slab is

P =
κA∆T

d

A large, flat lake in the upper Midwest has a uniform depth of 5.0 meters of water that is covered
by a uniform layer of 1.0 cm of ice. Cold air has moved into the region so that the upper surface
of the ice is now maintained at a constant temperature of −10 ◦C by the cold air (an infinitely
large constant temperature heat sink). The bottom of the lake remains at a fixed 4.0 ◦C because
of contact with the earth (an infinitely large constant temperature heat source). It is reasonable
to assume that heat flow is only in the vertical direction and that there is no convective motion in
the water.

a. Determine the initial rate of change in ice thickness.

Solution

The main effect is that the ice radiates heat into the air due to the temperature gradient
through it, and this freezes the water next to the ice. However, there are many other effects
that slightly change the answer.

i. There is another contribution to the thermal power from the temperature gradient in
the water.

ii. As the water freezes, it lifts the ice above it.

iii. When a layer of water freezes into ice, all of the other water and ice becomes slightly
colder.

The first point should be addressed for full credit. To do this, we will calculate both contri-
butions. The water right at the bottom of the ice is at 0 C◦. The temperature gradients in
the water and ice are both uniform since the system is in quasi-equilibrium; physically, if the
temperature gradient were not uniform, there would be a net flow of heat to or away from
some regions, quickly making the gradient uniform again.

The temperature gradient in the water is 4 C◦/5 m. Multiplying by the conductivity, we get
a power of

Pw =
4 C◦

5 m

0.57 W

mC◦ = 0.456 W/m2

delivered through the water. The same calculation for the ice gives power

Pi =
10 C◦

.01 m

2.2 W

m · C◦ = 2200 W/m2

delivered through the ice. Thus Pw is negligible and can be ignored.

Now, each square meter of water directly underneath the ice loses 2200 J of energy per second.
That is enough energy to freeze

2200 W/(330, 000 J/kg) = 6.7× 10−3 kg/s
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of water into ice. Converting to volume, we have

(6.7× 10−3 kg/s)/(920 kg/m3) = 7.2× 10−6 m3/s

of ice formed for each square meter of ice, which means the ice is growing at a rate

r = 7.2× 10−6 m/s = 2.6 cm/hr.

Next, we will account for the second and third points; these are not necessary for full credit.
First consider the rising of the water. Each square meter of ice initially weighs 9.2 kg. A
power of 2200 W is enough to lift this ice about 24 m/s against gravity. In reality, the ice is
lifted at a much slower rate, so this accounts for a negligible portion of the energy.

The third point requires some more explanation. In an appropriate coordinate system, the
temperature profile of the ice is

T (x, d) =
(
1− x

d

)
δT, x ∈ [0, d]

where d is the thickness and δT = −10 C◦. As the thickness d increases, all of the ice must
decrease slightly in temperature to maintain a linear temperature gradient,

∂T

∂d
=

x

d2
δT.

By drawing a graph, one can see this contribution is equal to the heat that would be needed
to cool the new ice formed by 5 C◦, which gives a 3% correction to the answer. There is also
a similar contribution from cooling the water, which is negligible. Finally, we neglected the
sublimation of the ice.

b. Assuming the air stays at the same temperature for a long time, find the equilibrium thickness
of the ice.

Solution

This part is independent of the previous part. For convenience, define h0 to be the depth of
the lake if all the water were in liquid form. Accounting for the centimeter of ice, h0 = 5.01
m to the number of significant digits we’re using.

The ice will stop getting thicker when the energy flux through the water equals that through
the ice,

∆Tw

hw
κw =

∆Ti

hi
κi.

Since the thickness of the water is hw, the amount of water that has frozen into ice had a
thickness of h0 − hw. Setting the mass of water frozen equal to the mass of the ice,

hiρi = (h0 − hw)ρw ⇒ hw =
h0ρw − hiρi

ρw
.
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Plugging this into the previous expression gives

∆Twκwρw
h0ρw − hiρi

=
∆Tiκi
hi

.

Solving for hi and plugging in numbers,

hi = h0
∆Tiκiρw

∆Twκwρw +∆Tiκiρi
= 4.89 m.

c. Explain why convective motion can be ignored in the water.

Solution

Convection occurs when boiling a pot of water because the hot water at the bottom of the pot
has lower density than the colder water higher up. This means gravitational energy can be
released when that hot, low-density water rises and cold, high-density water falls. When the
hot water rises, it releases heat, cools, gets denser, and falls back down again, in a convection
cycle. This phenomenon relies on the hotter water having lower density.

However, water reaches its maximum density at 4 C◦, so the water at the bottom of the lake,
though warmer, is more dense than the water above it. Convection does not occur because
moving the water around vertically would not release any gravitational potential energy.

Some important quantities for this problem:
Specific heat capacity of water Cwater 4200 J/(kg · C◦)
Specific heat capacity of ice Cice 2100 J/(kg · C◦)
Thermal conductivity of water κwater 0.57 W/(m · C◦)
Thermal conductivity of ice κice 2.2 W/(m · C◦)
Latent heat of fusion for water Lf 330, 000 J/kg
Density of water ρwater 999 kg/m3

Density of ice ρice 920 kg/m3
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STOP: Do Not Continue to Part B

If there is still time remaining for Part A, you should review your work for
Part A, but do not continue to Part B until instructed by your exam

supervisor.
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Part B

Question B1

A uniform solid spherical ball starts from rest on a loop-the-loop track. It rolls without slipping
along the track. However, it does not have enough speed to make it to the top of the loop. From
what height h would the ball need to start in order to land at point P directly underneath the top
of the loop? Express your answer in terms of R, the radius of the loop. Assume that the radius of
the ball is very small compared to the radius of the loop, and that there are no energy losses due
to friction.

h

R

P

Solution

We fix the origin at P . Assume the ball leaves at an angle θ away from the vertical. At this
point, the x and y coordinates are

x = R sin θ, y = R(1 + cos θ).

By energy conservation, we have

mg(h− y) =
1

2
mv2 +

1

2
Iω2 =

1

2
m(1 + β)v2

where β = 2/5, and we used the fact that the ball rolls without slipping.
Let v be the speed of the ball when it leaves the loop. Then its velocity components at that

moment are
vx = −v cos θ, vy = v sin θ.

Assuming the ball impacts P at time t,

y =
1

2
gt2 − vyt, x = −vxt.

The second equation yields

t =
R

v

sin θ

cos θ

Copyright ©2016 American Association of Physics Teachers



2016 USA Physics Olympiad Exam Part B 16

and plugging this into the first equation gives

R+R cos θ =
1

2
g

(
R

v

sin θ

cos θ

)2

− v sin θ
R

v

sin θ

cos θ

which simplifies to

1 + cos θ =
gR

2v2
sin2 θ

cos θ
.

Now, the ball leaves the surface when the normal component of the force of the loop on the ball
just drops to zero. This happens when

mg cos θ = m
v2

R
⇒ v2

gR
= cos θ

and plugging this into the previous equation gives

1 + cos θ =
1

2

1− cos2 θ

cos2 θ
⇒ 2 cos2 θ = 1− cos θ.

This is a quadratic equation with solutions

cos θ =
−1±

√
1 + 8

4
= −1

4
± 3

4

Only the positive answer of cos θ = 1/2 is relevant here, though the negative answer is still physical!
Now that we know θ, getting the final answer is straightforward. We combine the energy

conservation equation and the condition

mg cos θ = m
v2

R

to find

h = 1 +

(
1

2
(1 + β) + 1

)
R cos θ =

37

20
R.
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Question B2

a. A spherical region of space of radius R has a uniform charge density and total charge +Q.
An electron of charge −e is free to move inside or outside the sphere, under the influence of
the charge density alone. For this first part ignore radiation effects.

i. Consider a circular orbit for the electron where r < R. Determine the period of the orbit
T in terms of any or all of r, R, Q, e, and any necessary fundamental constants.

Solution

We apply Gauss’s law,
Qin

ϵ0
=

∮
E⃗ · dA⃗.

This yields
Q

ϵ0

r3

R3
= 4πr2E ⇒ E =

Q

4πϵ0

r

R3

Since the motion is circular,

m
4π2r

T 2
= eE =

eQ

4πϵ0

r

R3

and solving for T gives

T = 2π

√
4πϵ0mR3

eQ
.

It is independent of r since the motion is simple harmonic.

ii. Consider a circular orbit for the electron where r > R. Determine the period of the orbit
T in terms of any or all of r, R, Q, e, and any necessary fundamental constants.

Solution

Applying Gauss’s law as in the previous part gives

E =
Q

4πϵ0

1

r2

as expected by the shell theorem; one could also just write this down directly. Using the
same circular motion equation,

m
4π2r

T 2
= e

eQ

4πϵ0

1

r2

and solving for T gives

T = 2π

√
4πϵ0mr3

eQ
.

It is proportional to r3/2 in accordance with Kepler’s third law.
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iii. Assume the electron starts at rest at r = 2R. Determine the speed of the electron
when it passes through the center in terms of any or all of R, Q, e, and any necessary
fundamental constants.

Solution

We use the above results to compute the potential difference,

∆V = −
∫ 0

2R
E⃗ · d⃗s,

=

∫ R

2R

Q

4πϵ0

1

r2
+

∫ 0

R

Q

4πϵ0

r

R3
,

=
Q

4πϵ0

(
−1

2R
− −1

R
+

R2

2R3

)
,

=
Q

4πϵ0R
.

By energy conservation,

v =

√
2

m
e∆V =

√
2eQ

4πϵ0mR
.

b. Accelerating charges radiate. The total power P radiated by charge q with acceleration a is
given by

P = Cξan

where C is a dimensionless numerical constant (which is equal to 1/6π), ξ is a physical
constant that is a function only of the charge q, the speed of light c, and the permittivity of
free space ϵ0, and n is a dimensionless constant. Determine ξ and n.

Solution

This is a dimensional analysis problem. The most straightforward method is to write out
all the dimensions explicitly. Note that a has dimensions of [L]/[T]2, P has dimensions of
[M][L]2/[T]3, c has dimensions of [L]/[T], q has dimensions of [C], and ϵ0 has dimensions of
[C]2[T]2/[M][L]3. The equation

P = aαcβϵ0
γqδ

has dimensions

[M][L]2/[T]3 =
(
[L]/[T]2

)α
([L]/[T])β

(
[C]2[T]2/[M][L]3

)γ
([C])δ

Mass is only balanced if γ = −1. As a result, charge is balanced if δ = 2. Proceeding similarly
for length and time,

P =
1

6π
a2c−3ϵ0

−1q2

giving answers of ξ = q2/c3ϵ0 and n = 2.
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c. Consider the electron in the first part, except now take into account radiation. Assume that
the orbit remains circular and the orbital radius r changes by an amount |∆r| ≪ r.

i. Consider a circular orbit for the electron where r < R. Determine the change in the
orbital radius ∆r during one orbit in terms of any or all of r, R, Q, e, and any necessary
fundamental constants. Be very specific about the sign of ∆r.

Solution

The energy radiated away is given by

∆E = −PT

where T is determined in the previous sections.

It is possible to compute the actual energy of each orbit, and it is fairly trivial to do for
regions r > R, but perhaps there is an easier, more entertaining way. Consider

∆E = ∆K +∆U

and for small changes in r,
∆U

∆r
≈ −F =

eQ

4πϵ0

r

R3
.

This implies the potential energy increases with increasing r, as expected. Now

∆K

∆r
≈ d

dr

(
1

2
mv2

)
=

1

2

d

dr

∣∣∣∣rmv2

r

∣∣∣∣
but mv2/r = F , so

∆K

∆r
≈ 1

2

d

dr
|rF | = eQ

4πϵ0

r

R3
.

This implies the kinetic energy increases with increasing r, also as expected, as this
region acts like a multidimensional simple harmonic oscillator. Combining,

∆E

∆r
≈ 2

eQ

4πϵ0

r

R3
= 2ma

Finally,

∆r = −
(

1

6π

a2

c3ϵ0
e2
)(

2π

√
4πϵ0mR3

eQ

)(
1

2ma

)
.

Plugging in the value of a, this can be simplified to

∆r = −1

6

√
e5Q

4πϵ03R(mc2)3
r

R
.

Alternatively, we can write the result in terms of dimensionless groups,

∆r = −2π

3

(
e2

4πϵ0Rmc2

)√
eQ

4πϵ0Rmc2
r.
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ii. Consider a circular orbit for the electron where r > R. Determine the change in the
orbital radius ∆r during one orbit in terms of any or all of r, R, Q, e, and any necessary
fundamental constants. Be very specific about the sign of ∆r.

Solution

Picking up where we left off,
∆U

∆r
≈ −F =

eQ

4πϵ0

1

r2
.

This implies the potential energy increases with increasing r.

∆K

∆r
≈ 1

2

d

dr
|rF | = ∆K

∆r
≈ − eQ

8πϵ0

1

r2
.

This implies the kinetic energy decreases with increasing r, a somewhat nonintuitive but true
statement for circular orbits. Combining,

∆E

∆r
≈ 1

2

eQ

4πϵ0

r

R3
=

ma

2
.

Using the same manipulations as before,

∆r = −
(

1

6π

a2

c3ϵ0
e2
)(

2π

√
4πϵ0mr3

eQ

)(
2

ma

)
.

Plugging in the value of a, this can be simplified to

∆r = −2

3

√
e5Q

4πϵ30r(mc2)3
.

Alternatively, we can write the result in terms of dimensionless groups,

∆r = −8π

3

(
e2

4πϵ0Rmc2

)√
eQ

4πϵ0Rmc2
R2

r
.
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Answer Sheets

Following are answer sheets for some of the graphical portions of the test.
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The Cylinder’s Frame

x

ct
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The Rod’s Frame

x′

ct′
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