
AAPT UCTF Computational Physics Report i September 16, 2016

AAPT Recommendations for
Computational Physics

in the Undergraduate Physics Curriculum

Report prepared by the AAPT Undergraduate Curriculum Task Force
Endorsed by AAPT Board of Directors

October 2016

AAPT UCTF Computational Physics Report September 16, 2016 ii

Table of Contents

 Executive Summary………………………………………………………………………………. iii

I. Introduction…………………………………………………………………………………………. 1

II. Rationale……………………………………………………………………………………………… 2

III. Computational Tools…………………………………………………………………………….. 2

IV. Skills……………………………………………………………………………………………………. 3

V. Recommendations for Learning Outcomes…………………………………………….. 4

VI. Curricular Issues…………………………………………………………………………………… 7

VII Challenges…………………………………………………………………………………………….. 8

VIII. Resources……………………………………………………………………………………………... 10

 Appendix A: The 2011 AAPT Statement on Computation………………………… 13

 Appendix B: Recommendations for Learning Outcomes: Examples………… 14

 Appendix C: Example Computational Tasks……………………………………………. 19

 References……………………………………………………………………………………………. 20

 About this Document…………………………………………………………………………….. 21

 About the AAPT Undergraduate Curriculum Task Force…………………………. 22

AAPT UCTF Computational Physics Report September 16, 2016 iii

Computational Physics
in the Undergraduate Physics Curriculum

Executive Summary

The Undergraduate Curriculum Task Force (UCTF) of the American Association of
Physics Teachers (AAPT) was established in 2013, in part, to develop
“…recommendations for coherent and relevant curricula…for different types of physics
majors.”

To be relevant, curricula must facilitate the development of skills that are useful to
physics majors in their post-baccalaureate careers. Skills necessary for using a
computer to calculate answers to physics problems, i.e., computational physics skills,
are highly valued by research, industry, and many other employment sectors.

The American Association of Physics Teachers (AAPT) has therefore developed the
recommendations outlined in this document. These recommendations build upon a
policy that the AAPT formally adopted in 2011, urging “that every physics and
astronomy department provide its majors and potential majors with appropriate
instruction in computational physics.” Because of the variance in the student audience,
the available resources, and a department’s curriculum, the manner in which these
recommendations are implemented is ultimately a local decision.

This document provides guidance and recommendations for incorporating
computational physics into undergraduate physics programs. The reasons for doing
so include the ubiquity of computation in the practice of physics, numerous
immediate educational benefits of a computational approach, and the need to prepare
physics graduates for the workplace and advanced degree programs. In order to
develop computational physics skills, students first need to have knowledge of and
experience with a variety of computational tools and fundamental computer skills.
Technical computing skills and computational physics skills can then be built on this
foundational knowledge. We briefly describe the types of computational tools that
are widely available to enable this work. We then present a list of computation-
related skills, divided into two focus areas, technical computing skills and
computational physics skills. All physics majors should develop and practice these
skills over the entire span of their degree programs, and we provide corresponding
descriptions of learning outcome recommendations, and append specific examples.
We describe different logistical ways to insert computation into the undergraduate
curriculum, the many challenges that must be overcome in order to do so, and
resources that can help instructors and departments implement these
recommendations.

We hope this document will be useful to physics department chairs, other
administrators, curriculum committees, and individual faculty members as they
assess the computational elements in their programs and seek new opportunities to
help their students become proficient in computational physics.

AAPT UCTF Computational Physics Report September 16, 2016 1

Computational Physics
in the Undergraduate Physics Curriculum

I. INTRODUCTION

The practice of physics has traditionally blended two complementary approaches—
theory and experiment—each with its own elaborate set of skills and methodologies.
Undergraduate physics curricula have therefore evolved to emphasize instruction in
pencil-and-paper calculations and laboratory skills, techniques, and practices. Since
the middle of the 20th century, however, the practice of physics has increasingly
incorporated an additional element: computation. Some physicists think of
computation as a third fundamental approach to studying the physical world, on the
same logical level as theory and experiment; others think of computation as an
essential tool that both theorists and experimentalists now use in most of their work.
Either way, computation has its own elaborate set of skills, and “a curriculum in which
computation is absent or plays a minor role is inauthentic to the contemporary
discipline.” [1]

Yet, despite the presence of computational work in almost all areas of physics
research, undergraduate physics programs still vary enormously in the extent to
which they include instruction in computational physics. Some students finish these
programs with a high level of computational proficiency while others may graduate
having had few useful computational experiences. Such a lack of experience and
proficiency can hinder physics baccalaureates seeking employment or admission to
advanced degree programs. One motivation for this report, therefore, is to help
physics students develop a set of computational physics skills that helps them to
achieve their career goals.

Another motivation for this report is to help students further develop their ability to
construct and disseminate physics knowledge. The recent report of the AAPT
Committee on Laboratories has noted that being successful in the construction and
dissemination of new knowledge requires the dynamic and interactive employment of
habits of mind, skills, and knowledge that might be characterized as thinking like a
physicist [2]. Although “thinking like a physicist” may be difficult to specify, it would
certainly include the process of modeling: conceiving, constructing, and testing
models of the observable world. Because modeling is now often done
computationally as well as in the laboratory, there is a close connection between the
skills and practices used in computation and in the laboratory. Computational results
can lead to new predictions, models, and ways of understanding physical systems.
Moreover, the computational cycle is iterative, much like the experimental cycle. Here,
the computational cycle is called the “computational physics approach” to doing
physics. At the heart of the computational physics approach is computational physics
thinking that builds, first, on students’ fundamental computer skills using
computational tools and, second, on the development of their technical computing
skills.

AAPT UCTF Computational Physics Report September 16, 2016 2

II. RATIONALE

The rationale for integrating computational physics into the undergraduate physics
curriculum rests on the following premises:

 Physics degree programs should reflect the contemporary practice of physics
— and computation is now ubiquitous in that practice.

 Students gain a deeper understanding of physics and underlying mechanisms
when they iteratively apply the fundamental laws of physics, whether in time
to compute a system’s evolution, or in space to compute the distribution of a
physical quantity.

 Students using computation can develop a more exploratory approach to
studying physical systems, which leads them to generate increasingly realistic
models of these systems.

 Students using computation can solve a much wider range of problems,
including those that are insoluble analytically or impractical to probe
experimentally.

 Students using computation can develop critical skills and knowledge
necessary for doing fundamental and applied research, better preparing them
for a wide variety of careers. As documented in reports from the Statistical
Research Center of the American Institute of Physics, there is high demand for
computational skills in the workplace for physics bachelor’s degree recipients
[3].

III. COMPUTATIONAL TOOLS

To use the computational physics approach, students must be able to use multiple
computational tools. Today’s students have access to a large number of
computational tools, and choosing among them may generate vigorous departmental
debate. It is not the purpose of this document to endorse any particular tool, but
instructors should be aware of the range of options and the trade-offs among them.
We recommend that over the course of an undergraduate program, students develop
proficiency in at least three different types of computational tools. The major types of
computational tools are:

 Spreadsheets. Although they are limited in power compared to other
computational tools, spreadsheets have the advantage of displaying the
results of all calculations so students can see exactly what is happening. Also,
many incoming physics students are already somewhat familiar with
spreadsheets; and spreadsheets are used in a wide range of careers.

 Integrated mathematical computing packages (Mathematica, Maple,
Matlab, etc.). These high-level software packages let students accomplish
common computational tasks very quickly, sometimes with as little as a single

AAPT UCTF Computational Physics Report September 16, 2016 3

line of code, so they are often the best choice for a brief computational exercise
in a course that doesn’t otherwise emphasize computing.

 General-purpose programming languages (Fortran, C, Java, Python, etc.).
These languages are the most versatile and ultimately the most powerful, and
learning one or more of them can be a worthwhile long-term career
investment for students.

 Special-purpose software. Physicists use a great variety of special-purpose
software for particular tasks such as data acquisition, graphics, animations,
simulations, and sharing information. Some special-purpose software
packages stand on their own, while others are add-ons to one of the computing
languages or integrated packages described above. Although a special-
purpose software product can be the best choice for use in the classroom,
instructors should consider whether it would be more empowering to teach
students to use a more general-purpose tool.

The lines between these categories of computational tools are not always sharp. For
example, Matlab can be used as a general-purpose programming language, while the
SciPy library allows Python to be used as a high-level mathematical computing tool.

Any computational tool has an associated learning curve that requires a significant
amount of time to traverse. Appropriate support must be provided so that the time
students spend using the tool can be focused on learning an appropriate skill or
physics concept.

Deliberately omitted from this list are tools that enable parallel computing, grid
computing, and working with “big data” and large simulations. Though such tools will
play a role in the future careers of many of our students, the resources needed to
incorporate them into the undergraduate curriculum are not widely available. We
urge the physics community to be mindful of this rapidly expanding component of
computational physics. Schools with the resources and expertise available could use
such tools to expand their computational curriculum beyond the recommended
minimum.

IV. SKILLS

To use the computational physics approach, students must develop a large number of
skills. We sort these skills into three categories: fundamental computer skills,
technical computing skills, and computational physics skills.

Students should have fundamental computer skills that include knowledge of and
experience with operating systems; file systems and file/data organization; coding,
using one or more computational tools; searching effectively for technical
information; and using document and presentation preparation software.

AAPT UCTF Computational Physics Report September 16, 2016 4

It is necessary to know the fundamental computer skills that incoming students have
so that a solid foundation can be developed through appropriate advising, support,
and instruction.

Building on their fundamental computer skills, students should develop technical
computing skills, which include the ability to:

 process data;
 represent data visually;
 prepare documents and presentations that are authentic to the discipline.

Ultimately, the computational physics approach makes use of skills that are
characteristic of what might be called computational physics thinking (the physics-
specific instance of computational thinking [4]), which is a synthesis of physics
principles and algorithmic thinking. Such computational physics skills include the
ability to:

 translate a model into code;
 choose scales and units;
 subdivide a model into a set of manageable computational tasks;
 choose algorithms and computational tools;
 debug, test, and validate code; and
 extract physical insight.

Developing technical computing skills is co-requisite for developing computational
physics skills, and both depend on the presence of appropriate computational tools
and the ability of the student to use these tools. Computational tools, technical
computing skills, and computational physics skills are therefore strongly coupled to
one another, and it is probably more effective to learn them together, in context,
rather than in isolation.

We provide more detailed descriptions of the technical computing skills and the
computational physics skills in the recommendations described in the following
section.

V. RECOMMENDATIONS FOR LEARNING OUTCOMES

This section describes recommendations for learning outcomes in an attempt to
define a minimum set of technical computing skills and computational physics skills
that physics majors should develop during their undergraduate programs. The
development of these skills does take time and should be intentionally integrated into
the undergraduate physics curriculum and reinforced throughout the curriculum,
rather than taught as isolated skills.

The first focus area, Technical Computing Skills, describes skills that must be
developed in order to engage productively in the production and dissemination of
physics knowledge through the use of computers. The second focus area,

AAPT UCTF Computational Physics Report September 16, 2016 5

Computational Physics Skills, describes skills and practices that involve synthesizing
physics with algorithmic ideas, coding/implementation, self-checking, and scientific
argumentation. These two focus areas provide a framework for curricular and
program development. In addition, mastering these two focus areas prepares
students to perform computational investigations at a level appropriate for
secondary teaching while providing a foundation of skills and practices that should
be significantly augmented for students intending to enter industry or a graduate
program. Additional educational research would help to refine detailed descriptions
of the skills in these two focus areas. Such research would then enable further
curriculum development and assessment of these skills.

To maintain the focus on computation-related skills, it is assumed below that students
have learned to identify the physics concepts relevant to developing a theoretical
model, to make reasonable simplifying assumptions, and to mathematically describe
a theoretical model (e.g., write the equations of motion).

Finally, no attempt was made to distinguish between introductory-level or upper-
level instruction because faculty at a particular institution [5] need to collaboratively
choose the appropriate points in their curricula for students to develop different
skills.

1. Technical Computing Skills

Students should be able to:

 Process data
Students should be able to use computers to process data, which includes
reducing, fitting, filtering, and/or averaging data, and computing uncertainties
from measurements. All the computational tools described in Section III can
be used to process data. It is worth noting that processing data can be done
without a specific model in mind; and so this technical skill is distinguished
from the computational physics skill of extracting physical insight.

 Represent data visually
Students should be able to produce static visualizations (i.e., plots) of data
because plots are fundamental to facilitating analysis and communication of
data. Additionally, because different types of plots are appropriate for
different data sets and analyses, students should be able to generate several
types of plots. It is critically important for students to be able to graphically
represent uncertainties on the data because the physical insights that can be
extracted from data are constrained by uncertainty.

 Prepare professional documents and presentations
Students should be able to prepare professional documents and presentations.
This skill is required to communicate results and is necessary in any
professional field. As discussed in the Laboratory Guidelines document [2],
students should produce these documents and presentations in forms

AAPT UCTF Computational Physics Report September 16, 2016 6

authentic to the discipline such as technical memos, journal-style articles,
slides for professional-style oral presentations, and scientific posters.

2. Computational Physics Skills

Students should be able to:

 Translate a model into code
Students should be able to translate a theoretical or algorithmic model into
code that enables computation. This is a multifaceted skill, which includes the
abilities to: use a computational tool to write readable, well-documented code
with correct syntax; use language documentation and/or reference materials
for the chosen computational tool to resolve coding questions and expand
coding vocabulary; and apply physics knowledge of the given system to make
discretization choices and monitor numerical errors, convergence, etc.

 Choose scales and units
Students should be able to choose physical scales and units appropriate to the
system. Often the chosen scales are used to convert equations to
dimensionless variables before coding. Such scales provide a measure against
which one can determine the significance of different phenomena at play in a
physical system.

 Subdivide a model into a set of manageable computational tasks
Students should be able to logically subdivide a computational model into a
set of manageable computational tasks, and organize their code accordingly.
That is, they should identify the types of computational tasks to be performed,
the required inputs, the sequence of tasks, and the processing of outputs to
obtain a solution.

 Choose algorithms and computational tools
Students should be able to choose among computational algorithms and
computational tools to produce a solution. The ability to make such choices
presupposes student familiarity with a variety of computational algorithms
and tools as well as criteria for choosing among different algorithms and tools.
For example, some mechanical systems should be simulated using a
differential equation algorithm that conserves energy, or one that uses a
variable time step; some many-body simulations require a dynamical
algorithm, while others are suited to Monte Carlo techniques.

 Debug, test, and validate code
Students should be able to debug, test, and validate computational models.
This process can include resolving error messages and other incorrect
behavior; checking special cases for which answers are already known;
adjusting the resolution of a discretization, or the limit of a sum, to estimate
the sizes of truncation errors; comparing to experimental data or to a different

AAPT UCTF Computational Physics Report September 16, 2016 7

computational model; and simply asking whether the results are physically
plausible.

 Extract physical insight
Students should be able to extract physical insight from a computation by
converting the raw output of a computation into a useful form, asking
interesting questions, and using the computation to answer these questions.
Often this process involves repeating a computation many times using
different sets of parameter values of particular interest, and communicating
results effectively to others in forms authentic to the discipline. Students
should use their results to determine the effectiveness and/or limitations of a
model and further refine the model (e.g., by adding missing phenomena) based
on a comparison to experimental or theoretical results or other validated
models.. Students should navigate the cycle from model to implementation to
results to concepts to revised model, in order to experience the iterative
nature of constructing physics knowledge.

APPENDIX B provides several examples of these learning outcomes, organized in
tabular form. We also refer the reader to examples of significantly augmented
curricula [6-8] that achieve many or all of these outcomes. APPENDIX C describes
several computational physics tasks that are becoming widespread in undergraduate
physics curricula and can provide context for achieving several of the learning
outcomes.

VI. CURRICULAR ISSUES

Once a department has decided upon a set of computational learning objectives, the
faculty must decide what kinds of curricular structures are needed to help students
meet those objectives. The structures should ultimately be robust enough and
sufficiently supported so that all instructors (permanent or visiting) can contribute
effectively.

Computation can be introduced into the undergraduate physics curriculum in any or
all of the following ways:

 Adding computational exercises and projects to existing physics courses that
have traditionally emphasized pencil-and-paper calculations and/or
laboratory measurements;

 Designing new courses that merge traditional elements with computational
work;

 Offering one or more dedicated courses in computational physics;

 Providing opportunities for computational independent study and/or
research projects.

AAPT UCTF Computational Physics Report September 16, 2016 8

Departments should use as many of these approaches as possible and are encouraged
to identify and use other approaches that lead to the development of students’
computational skills. We argue that relying entirely on dedicated computational
physics courses and/or independent study is not sufficient because such a program
would overly segregate computational work, making too few connections to the rest
of the curriculum. On the other hand, merely adding computational exercises to
existing courses runs the risk of allocating too little time to computation, and/or,
“hiding” it in the curriculum with too little explicit recognition. Moreover, such
exercises, when attempted without the necessary preparation or scaffolding, can lead
to student frustration.

Computational work should be introduced in the introductory course. The amount of
computation that can feasibly be done in that course will vary among institutions, but
incorporating computational physics early allows faculty to assess and build students’
fundamental computer skills and experience with one or more computational tools.
It also allows students to explore authentic, complex problems that they might not
see until later in the curriculum.

Many instructors who teach computational physics have found that it is best taught
in a “lab” setting where students can work at a more flexible pace, help each other,
and obtain help when needed from an instructor or lab assistant [9]. In addition,
developing these skills in a communal environment helps students to function as
members of a scientific community.

VII. CHALLENGES

Integrating computation into the undergraduate physics curriculum is not easy. Let
us, therefore, acknowledge some of the main challenges to doing so:

 The hidden curriculum. Many departments do not yet have explicit goals for
most of their curricula, let alone for computational physics. An explicit
statement of those goals is crucial before an effective curriculum and
associated activities can be developed.

 Curricular time. Physics programs traditionally require a great deal of course
work even without any computational components. Making time in the
curriculum for computational work can therefore be a significant challenge.
To address this challenge, department faculty should together carefully
consider the value that computation will have for their students, and decide
together how local resources are best managed to facilitate learning
computational physics.

 Time demands. It is crucial to understand where, and how, computational
work can be added to the curriculum without imposing impossible time
demands on the students. It is also important to be realistic about the amount
of faculty time needed to implement computational work in the curriculum.

AAPT UCTF Computational Physics Report September 16, 2016 9

 Range of instructor backgrounds. Physics instructors, although familiar
with computational work in their scholarly activities, may be uncomfortable
with the types of computation that can be most naturally incorporated into
their courses. Workshops, conferences, and professional societies are already
taking steps to help faculty learn more about teaching computational physics,
as described in the Resources section below.

 Range of student backgrounds. Some students enter a physics program with
extensive programming experience, while others have never written a single
line of code and may be afraid of programming a computer. Departments will
need to know and take into account the backgrounds of the local student
cohort when making curricular decisions.

 Variety of computational tools. Students coming into a course may have
already learned to use some computational tools and developed preferences
for one over another. Instructors also have varied backgrounds and
preferences. It is virtually impossible for a single instructor to provide
technical support for all the tools that students might wish to use. Faculty need
to work closely with their colleagues, both inside and outside the department,
when choosing computational tools to use, and they should be willing to
compromise to provide a coherent computational approach for their students.

 Inadequate textbooks. Few of the popular textbooks used in traditional
physics courses integrate computational work in a nontrivial way; exceptions
are described in the Resources section below. There is a continuing need for
new (or revised) textbooks that thoughtfully integrate more computation.

 Shortage of educational research. Most of our knowledge of how to teach
(or how not to teach) computational physics is anecdotal. There is a shortage
of published research to document what works and what does not. This
shortage means there are many ongoing opportunities for physics education
researchers, and numerous other studies that have yet to be pursued. Support
for such research and its dissemination is needed.

 Lack of community and support. It takes a significant amount of time for a
single faculty member to effectively include computation into an existing
course. To do so in isolation may make it more difficult. Consequently, a
community of instructors who integrate computation in their teaching is
needed to provide support and professional development.

 Space and scheduling constraints. Instructors who wish to teach
computation in a lab-style setting may find that no suitable classroom is
available, or that it is impractical to schedule a class for the longer blocks of
time that lab work usually requires. Faculty may need to be flexible in finding
ways to teach computational physics.

 Hardware challenges. There is a cost to maintaining a large number of
school-owned workstations for physics students to use in their computational

AAPT UCTF Computational Physics Report September 16, 2016 10

work. Many students prefer to use their own computers, but the variety of
hardware and operating systems then creates troubleshooting challenges for
instructors.

 Software installation. Installing and configuring specialized software for
computational physics is time-consuming and can be frustrating.

The good news is that despite all these challenges, many physics departments have
successfully integrated a great deal of computation into their undergraduate
curricula. The next section provides pointers to resources that can help departments
address many of these challenges.

VIII. RESOURCES

The following set of resources is provided as a starting point for instructors and
departments looking to implement these computational physics recommendations in
their courses and curricula. It should be noted that this is neither an exhaustive nor
an endorsed list of resources. There are certainly other resources available, and new
resources are being produced all the time that instructors and departments may also
find beneficial.

Collections of Resources

The American Journal of Physics (AJP) Resource Letters on computational physics
contain annotated lists of textbooks for computational physics courses and lists of
articles that discuss ways to integrate computation into the physics curriculum.

Paul L. DeVries, “Resource Letter CP-1: Computational Physics,” Am. J. Phys. 64
(4), 364-8 (1996).

Rubin H. Landau, “Resource Letter CP-2: Computational Physics,” Am. J. Phys. 76
(4&5), 296-306 (2008).

The second resource letter by Landau leads the April 2008 theme issue on
computational physics (see below). The issue is an excellent entry point for those
starting the process of integrating computation into the physics curriculum.

ComPADRE, the physics and astronomy archive, already has a significant set of
holdings of computational physics articles, conference proceedings, and curricular
materials. Computational physics-related materials are available in various
ComPADRE collections, including the Open Source Physics collection and collections
focused on particular topics, such as statistical and thermal physics, and quantum
mechanics.

http://www.compadre.org/

The Partnership for Integration of Computation into Undergraduate Physics (PICUP)
is now making computational activities, for both the introductory and upper level,
available through ComPADRE:

http://www.compadre.org/

AAPT UCTF Computational Physics Report September 16, 2016 11

http://www.compadre.org/PICUP

A summary of the 2007 Topical Conference on Computational Physics in the Upper-
level Curriculum is archived on ComPADRE:

http://www.compadre.org/portal/items/detail.cfm?ID=11362

Speakers and the schedule of the 2008 Gordon Research Conference on Computation
and Computer-Based Instruction are archived on the Gordon Research Conference
website. Many of the speakers contributed articles to the AJP theme issue on
computational physics (see below).

https://www.grc.org/programs.aspx?id=10156

In April 2008, the American Journal of Physics published a double issue with the
theme of computational physics. The issue contains a highly useful collection of
articles that touch on virtually every aspect of teaching computational physics.

American Journal of Physics 76 (4&5), (2008).

The Next Generation Science Standards has a section on K-12 computational thinking
skills. Mathematical and computational thinking are described in Appendix F - Science
and Engineering Practices in the NGSS.

http://www.nextgenscience.org/next-generation-science-standards

Perspectives on Computational Physics in the Undergraduate Curriculum

The following articles also provide useful information and perspectives:

Robert G. Fuller, "Numerical Computations in US Undergraduate Physics
Courses", Comp. Sci. Eng. 8, 16-21 (2006).

Jeanette M. Wing, “Computational Thinking,” Comm. of the ACM 49 (3), 33-35
(2006).

Marty Johnston, “Implementing Curricular Change,” Comp. Sci. Eng. 4 (5), 32-37
(2006).

Norman Chonacky and David Winch, “Integrating computation in to the
undergraduate curriculum: A vision and guidelines for future developments”,
Am. J. Phys. 76 (4&5), 327-333 (2008).

Knut Mørken et al., “Computing in Science and Engineering: A guide for
universities and colleges in Norway”, report to the Norwegian Ministry of
Education and Research, June 15, 2011.

Ruxandra M. Serbanescu, Paul J. Kushner, and Sabine Stanley, “Putting

http://www.compadre.org/PICUP
http://www.compadre.org/portal/items/detail.cfm?ID=11362
https://www.grc.org/programs.aspx?id=10156
http://scitation.aip.org/content/aapt/journal/ajp
http://www.nextgenscience.org/next-generation-science-standards

AAPT UCTF Computational Physics Report September 16, 2016 12

computation on a par with experiment and theory in the undergraduate
curriculum,” Am. J. Phys. 79 (9), 919-924 (2011).

Marcos D. Caballero and Steven J. Pollock, “A model for incorporating computation
without changing the course: An example from middle-division classical
mechanics,” Am. J. Phys. 82 (3), 231-237 (2014).

Curricular Materials

Examples of mature introductory textbooks that integrate computation are

Matter and Interactions, 4th edition (Wiley, 2015), by Ruth W. Chabay and Bruce
A. Sherwood.

Six Ideas that Shaped Physics, 3rd edition (McGraw-Hill, 2017), by Thomas A. Moore.

Examples of upper-level textbooks or supplements to upper-level textbooks that
integrate computation are

Physlet Quantum Physics: An Interactive Introduction, 2nd edition, at
http://www.compadre.org/pqp/, by Mario Belloni, Wolfgang Christian, and Anne
J. Cox.

Statistical and Thermal Physics: With Computer Applications, 6.1.2010 edition
(Princeton, 2010), by Harvey Gould and Jan Tobochnik.

Computation and Problem Solving in Undergraduate Physics (Lawrence University
Press, Appleton, WI 2013), by David M. Cook.

AAPT UCTF Computational Physics Report September 16, 2016 13

APPENDIX A: The AAPT Statement on Computational Physics and its Rationale

The AAPT Statement on Computational Physics, which was approved in 2011, is as
follows:

The American Association of Physics Teachers urges that every physics
and astronomy department provide its majors and potential majors
with appropriate instruction in computational physics.

Rationale:

Contemporary research in physics and related sciences almost always involves the
use of computers. They are used for data collection and analysis, numerical analysis,
simulations, and symbolic manipulation. Computational physics has become a third
way of doing physics and complements traditional modes of theoretical and
experimental physics. In addition, almost all undergraduate students who take
physics courses will use computational tools in their future careers even if they do
not become practicing physicists.

One of the traits that distinguishes physics from other sciences is the ability to
develop new tools as needed to do our work. These new tools include new
experimental techniques, mathematical methods, theoretical formalisms, and now
new computer algorithms. Thus, we should include in the physics undergraduate
curriculum some level of instruction in computer algorithms appropriate for solving
problems in physics.

Insight into understanding physics can be gained in many ways. Experiments
emphasize that our models are connected to the real world, and frequently surprise
us with new phenomena we didn't expect. Theory provides the tools for organizing
our knowledge, making predictions, and describing nature in a concise and
compelling manner. The computer provides a new tool that enhances both theory and
experiment. Computer simulations allow us to develop models that are not solvable
analytically, to test theories where traditional experiments are too difficult or
expensive, to ask “what-if” questions, and to visualize the time development of
dynamical systems. As a result simulations provide different insights, which may not
be possible to obtain through the use of traditional theoretical and experimental
methods.

AAPT UCTF Computational Physics Report September 16, 2016 14

APPENDIX B: Recommendations for Learning Outcomes: Examples

The recommendations for student learning outcomes given in this document are for
a minimum set of technical computing skills and computational physics skills that
physics majors should develop during their undergraduate major. These
recommendations are intentionally general enough that they are universally
accessible. The way in which these recommendations are implemented will vary from
institution to institution, depending, for example, on the local student population and
the resources available. Departments that have the expertise and/or resources to go
above and beyond these recommendations are strongly encouraged to do so in order
to help their majors develop additional knowledge and skills.

Each of these learning outcomes should be addressed at some point during the full
span of the undergraduate physics curriculum. Similar to the experimental and
theoretical physics curricula, the computational physics curriculum should be a spiral
curriculum such that students develop and reinforce their skills through scaffolded,
multiple experiences, beginning in the introductory courses and continuing in upper-
level courses. Specific examples for the two focus areas are provided in the tables
below. It is important to note that these few examples are intended only to aid
departments in implementing computational physics into their curriculum. Not all of
these examples need to be included in the physics curriculum; in fact, there probably
is not time to include them all in a physics curriculum. Also, these examples are
certainly not the only ways these learning outcomes could be demonstrated;
departments are encouraged to develop, and share, their own examples.

1. Technical Computing Skills

Students should be able to:

Process Data. Example: Use and/or code a least-squares fitting of data
to a functional form, and plot the data with uncertainties
together with the fit function, e.g., fitting the profile of a
laser beam, or a far-field diffraction pattern.

Example: Compute a data set for graphical comparison to
appropriately reduced experimental data, including
uncertainties.

Example: Compute the average of several data sets to
reduce the effects of run-to-run variations and compare to
theoretical models.

Example: Given a controlled series of spectra with
occasional noise spikes, filter out the spikes and integrate
peak areas to plot the signal as a function of the control
variable.

AAPT UCTF Computational Physics Report September 16, 2016 15

1. Technical Computing Skills

Students should be able to:

Represent Data
Visually.

Example: Produce two-dimensional plots of one or more
sets of data with error bars in both dimensions, e.g., from
video analysis of everyday sports projectiles.

Example: Produce a contour plot of the period of a
physical pendulum as a function of its center of mass
position and the characteristic size of the pendulum.

Example: Produce a histogram of detection events as a
function of event characteristic, such as particle energy or
time-of-flight, for different detector characteristics such as
position.

Example: Produce phase space plots, a bifurcation
diagram, and a Poincaré section for a chaotic oscillator.

Prepare professional
documents and
presentations

Example: Write a technical memo that incorporates the
graphical representation of data.

Example: Prepare a professional manuscript that satisfies
all journal submission guidelines, especially with regard
to figures.

Example: Prepare an oral or poster presentation that
satisfies the guidelines of a professional organization.

Example: Demonstrate awareness of audience needs
during the production of visual and written
representations of outputs. Actively consider different
visual designs to make graphic representations more
effective.

AAPT UCTF Computational Physics Report September 16, 2016 16

2. Computational Physics Skills

Students should be able to:

Translate a model into
code.

Example: Write code to set up arrays of values, perform
calculations in a sequence and/or under specified
conditions, and generate numerical or graphical output.

Example: Use reference materials to adapt code examples
to perform a particular task, such as calculating the sum of
values in a particular array (e.g., summing forces exerted
by an array of charged particles).

Choose scales and units. Example: For a spherical balloon (projectile) falling in air,
relevant scales could include the length scale set by the
balloon’s diameter, and the time scale set by the amount
of time for the balloon to free fall its diameter.

Subdivide a model into
a set of manageable
computational tasks.

Example: Calculating the motion of a charged particle in a
region with a specified distribution of charges involves
calculating the net force by applying the principle of
superposition (summing), numerically integrating the
equations of motion, and storing and/or plotting the
trajectory. To simulate a beam of such particles, an
additional task is to organize the storage of the many
particles that constitute the beam.

Choose algorithms. Example: When numerically integrating equations of
motion, choose among algorithms such as the Euler-
Cromer method, fourth-order Runge-Kutta with constant
step size, or with a variable step size set by an error
criterion. Consider trade-offs between complexity and
execution speed when choosing an algorithm.

AAPT UCTF Computational Physics Report September 16, 2016 17

2. Computational Physics Skills

Students should be able to:

Debug, test, and
validate code. Example: Use the debugging tool in an integrated

development environment (IDE) to rapidly find and
resolve bugs. Isolate portions of a code to determine
where a particular bug occurs.

Example: Check that a code to solve for the motion of a
falling object in air reproduces the analytical free fall
result when the drag force is set to zero.

Example: Check that a code to solve for the evolution of a
harmonic oscillator reproduces the analytical solution.

Example: Check that a code to calculate the electric field
due to a symmetric distribution of charges converges to
the analytical solution as the discretized distribution
becomes more fine-grained.

Example: Probe a model to compute charged particle
trajectories to test whether or for what values the model
breaks down for relativistic particles.

Example: Check that a code to process a data set performs
as intended by comparing outputs to expected outputs for
test data.

Example: Check that a code to solve the time-independent
Schrödinger equation by the shooting method reproduces
the analytical solution for the finite square well.

Example: Check that a code to model an ideal gas
reproduces the Maxwell-Boltzmann distribution for the
given conditions.

AAPT UCTF Computational Physics Report September 16, 2016 18

2. Computational Physics Skills

Students should be able to:

Extract physical insight. Example: Make a contour plot of the period of a physical
pendulum versus adjustable geometric parameters (i.e.,
the center of mass position, the size of the pendulum) to
determine the sensitivity of the period to these
parameters.

Example: Compute the motion of an object falling through
air, using different models for air drag, and compare to
experimental data.

Example: Compute the electric field due to a nontrivial
charge distribution and determine its sensitivity to
perturbations in the distribution.

Example: Compute the evolution of quantum-mechanical
two-level system and study its dependence on the nature
and strength of the coupling between the levels.

Example: Compute the normal modes of an acoustic
object and the frequency spectrum generated by a
impulsive hit; compare to the corresponding experimental
frequency spectrum, obtained by applying a fast Fourier
transform to a recorded sound.

Example: Use the visual representation of the output as
evidence in developing clearly stated scientific arguments.

AAPT UCTF Computational Physics Report September 16, 2016 19

APPENDIX C: Example Computational Physics Tasks

Listed below are a number of computational physics tasks that are becoming
reasonably widespread in undergraduate course work. We do not recommend that
every undergraduate program try to incorporate all (or even most) of these examples,
and we know that instructors are continually developing exercises that are more
innovative than these. For those who may be new to the teaching of computational
physics, we hope this list can serve as a starting point.

 Use a simple second-order algorithm to integrate Newton’s second law, to
predict the behavior of a mechanical system such as a projectile, a pendulum,
or celestial bodies.

 Simulate and explore the behavior of a chaotic system such as a damped,
driven pendulum or the Lorenz model.

 Simulate the dynamics of a many-body system such as a Lennard-Jones fluid,
to explore phase behavior and irreversible processes.

 Calculate electric and magnetic fields of nontrivial charge and current
distributions, using the principle of superposition.

 Solve Laplace’s equation by the relaxation method, to obtain the electrostatic
potential near a conductor with a nontrivial shape.

 Numerically integrate probability distributions (e.g., Maxwell-Boltzmann
distribution, Planck spectrum, or a Gaussian wave packet) to obtain
probabilities of measured values being in specific ranges.

 Solve the time-independent Schrödinger equation in one dimension by the
shooting method, to obtain energy levels and stationary-state wave functions.

 Use a matrix eigen-system library routine to find the normal modes of a system
of coupled oscillators, or to solve the time-independent Schrödinger equation.

 Use combinatoric functions to calculate the entropy and heat capacity of a
collection of two-level systems or quantum harmonic oscillators.

 Use pseudo-random numbers to simulate radioactive decay, diffusion, or some
other random process.

 Use the Metropolis algorithm to simulate a simple fluid, or the Ising model of
a ferromagnet, held at constant temperature.

 Simulate the time evolution of a continuous system, according to the wave
equation or the time-dependent Schrödinger equation.

 Analyze signals or wave shapes using a fast-Fourier-transform library routine.

AAPT UCTF Computational Physics Report September 16, 2016 20

References

[1] Wolfgang Christian and Bradley Ambrose, “An Introduction to the Theme
Double-Issue”, Am. J. Phys. 76 (4&5), 293-294 (2008).

[2] AAPT Recommendations for the Undergraduate Physics Laboratory Curriculum,
available at http://www.aapt.org/Resources/. Nancy Beverly; Duane Deardorff;
Richard Dietz; Melissa Eblen-Zayas; Robert Hobbs; Dean Hudek; Joseph Kozminski;
Heather Lewandowski; Steve Lindaas; Ann Reagan; Randy Tagg; Jeremiah Williams;
and Benjamin Zwickl.

[3] Patrick Mulvey and Starr Nicholson, “Physics Bachelor’s Initial Employment”,
focus on report, American Institute of Physics, June 2015.

[4] Jeanette M. Wing, “Computational Thinking”, Comm. of the ACM 49 (3), 33-35
(2006).

[5] In some cases, there may be a very strong link between, say, a two-year college
and a four-year college or university via the transfer of students. These students
would benefit from inter-institutional faculty collaboration on computational
physics instruction.

[6] Marty Johnston, “Implementing Curricular Change”, Comp. Sci. Eng. 4 (5), 32-37
(2006).

[7] David M. Cook, “Computation in undergraduate physics: The Lawrence
Approach”, Am. J. Phys. 76 (4&5), 321-326 (2008).

[8] David H. McIntyre, Janet Tate, and Corinne Manogue, “Integrating computational
activities into the upper-level Paradigms in Physics curriculum at Oregon State
University”, Am. J. Phys. 76 (4&5), 340-346 (2008).

[9] Ross L. Spencer, “Teaching computational physics as a laboratory sequence”, Am.
J. Phys. 73 (2), 151-153 (2005).

http://www.aapt.org/Resources/

AAPT UCTF Computational Physics Report September 16, 2016 21

ABOUT THIS DOCUMENT
This document was developed through several versions by a subset of members of
the AAPT Undergraduate Curriculum Task Force (UCTF): Ernie Behringer (Eastern
Michigan University), Juan Burciaga (Bowdoin College), Dick Dietz (University of
Northern Colorado), Andy Gavrin (Indiana University-Purdue University at
Indianapolis), Joseph Kozminski (Lewis University), and Victor Migenes (Brigham
Young University).

Daniel Schroeder (Weber State University) provided an alternative version that
fundamentally influenced and strongly contributed to the final version. The UCTF is
very grateful for his extensive and thoughtful input.

The task force thanks the following people for the input to various early versions of
this document: Mario Belloni (Davidson College), Michael Falk (Johns Hopkins
University), Joe Heafner (Catawba Valley Community College), Brian O’Shea
(Michigan State University), Jan Tobochnik (Kalamazoo College), and PICUP members
Marcos “Danny” Caballero (Michigan State University), Norman Chonacky (Yale
University), Larry Engelhardt (Francis Marion University), and Kelly Roos (Bradley
University) for providing valuable feedback. The task force also thanks Elizabeth
George and colleagues at Wittenberg University, and Marie Lopez del Puerto and
colleagues at the University of St. Thomas for their helpful input.

AAPT UCTF Computational Physics Report September 16, 2016 22

ABOUT THE AAPT Undergraduate Curriculum Task Force

The Undergraduate Curriculum Task Force (UCTF) of the American Association of
Physics Teachers (AAPT) was established in 2013, with the following charge:

The AAPT Undergraduate Curriculum Task Force (UCTF) is charged with developing
specific, multiple recommendations for coherent and relevant undergraduate
curricula (including course work, undergraduate research, mentoring, etc.) for
different types of physics majors in collaboration with the APS and AIP, and with
developing recommendations for the implementation and assessment of such
curricula.

At the time of its establishment in 2013, the UCTF consisted of the following members,
many of whom were drawn from several different AAPT Area Committees at that
time:

 Name Institution/Organization
1 Trish Allen Appalachian State University
2 Ernie Behringer Eastern Michigan University (Chair)
3 Juan Burciaga Mt. Holyoke College
4 Beth Cunningham* AAPT (Executive Officer)
5 Dwain Desbien Estrella Mountain College
6 Dick Dietz University of Northern Colorado
7 Jerry Feldman George Washington University
8 Noah Finkelstein University of Colorado, Boulder
9 Andy Gavrin Indiana University-Purdue University, Indianapolis

10 Dennis Gilbert Lane Community College
11 Tim Grove Indiana-Purdue University at Fort Wayne
12 Bob Hilborn* AAPT (Associate Executive Officer)
13 Ted Hodapp APS (Director of Education & Diversity)
14 Seth Guinals Kupperman NYC HS for Math, Science & Engineering
15 Joseph Kozminski Lewis University
16 Ntungwa Maasha College of Coastal Georgia
17 Corinne Manogue Oregon State University
18 Victor Migenes Brigham Young University, Provo
19 Tom Olsen** American Institute of Physics
19 Steve Shropshire* Idaho State U
20 Rob Steiner American Museum of Natural History
21 Aaron Titus* High Point U

* Ex oficio.

** AIP Representative

