
AAPT UCTF Computational Physics Report i September 16, 2016 

AAPT Recommendations for 
Computational Physics  

in the Undergraduate Physics Curriculum 
 
 

 

 
 
 
 
 

Report prepared by the AAPT Undergraduate Curriculum Task Force 
Endorsed by AAPT Board of Directors 

October 2016 
 

 



AAPT UCTF Computational Physics Report   September 16, 2016  ii 

Table of Contents 
 

 Executive Summary………………………………………………………………………………. iii 

I. Introduction…………………………………………………………………………………………. 1 

II. Rationale……………………………………………………………………………………………… 2 

III. Computational Tools…………………………………………………………………………….. 2 

IV. Skills……………………………………………………………………………………………………. 3 

V. Recommendations for Learning Outcomes…………………………………………….. 4 

VI. Curricular Issues…………………………………………………………………………………… 7 

VII Challenges…………………………………………………………………………………………….. 8 

VIII. Resources……………………………………………………………………………………………... 10 

 Appendix A: The 2011 AAPT Statement on Computation………………………… 13 

 Appendix B: Recommendations for Learning Outcomes: Examples………… 14 

 Appendix C: Example Computational Tasks…………………………………………….  19 

 References……………………………………………………………………………………………. 20 

 About this Document…………………………………………………………………………….. 21 

 About the AAPT Undergraduate Curriculum Task Force…………………………. 22 

   

   

 
  
 
 
 
 
 
 
 
 
  



AAPT UCTF Computational Physics Report   September 16, 2016  iii 

Computational Physics  
in the Undergraduate Physics Curriculum 

Executive Summary 

The Undergraduate Curriculum Task Force (UCTF) of the American Association of 
Physics Teachers (AAPT) was established in 2013, in part, to develop 
“…recommendations for coherent and relevant curricula…for different types of physics 
majors.”  

To be relevant, curricula must facilitate the development of skills that are useful to 
physics majors in their post-baccalaureate careers. Skills necessary for using a 
computer to calculate answers to physics problems, i.e., computational physics skills, 
are highly valued by research, industry, and many other employment sectors.  

The American Association of Physics Teachers (AAPT) has therefore developed the 
recommendations outlined in this document. These recommendations build upon a 
policy that the AAPT formally adopted in 2011, urging “that every physics and 
astronomy department provide its majors and potential majors with appropriate 
instruction in computational physics.” Because of the variance in the student audience, 
the available resources, and a department’s curriculum, the manner in which these 
recommendations are implemented is ultimately a local decision.  

This document provides guidance and recommendations for incorporating 
computational physics into undergraduate physics programs. The reasons for doing 
so include the ubiquity of computation in the practice of physics, numerous 
immediate educational benefits of a computational approach, and the need to prepare 
physics graduates for the workplace and advanced degree programs. In order to 
develop computational physics skills, students first need to have knowledge of and 
experience with a variety of computational tools and fundamental computer skills. 
Technical computing skills and computational physics skills can then be built on this 
foundational knowledge.  We briefly describe the types of computational tools that 
are widely available to enable this work. We then present a list of computation-
related skills, divided into two focus areas, technical computing skills and 
computational physics skills. All physics majors should develop and practice these 
skills over the entire span of their degree programs, and we provide corresponding 
descriptions of learning outcome recommendations, and append specific examples.  
We describe different logistical ways to insert computation into the undergraduate 
curriculum, the many challenges that must be overcome in order to do so, and 
resources that can help instructors and departments implement these 
recommendations.  

We hope this document will be useful to physics department chairs, other 
administrators, curriculum committees, and individual faculty members as they 
assess the computational elements in their programs and seek new opportunities to 
help their students become proficient in computational physics. 
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Computational Physics 
in the Undergraduate Physics Curriculum 

 
I. INTRODUCTION 

The practice of physics has traditionally blended two complementary approaches—
theory and experiment—each with its own elaborate set of skills and methodologies. 
Undergraduate physics curricula have therefore evolved to emphasize instruction in 
pencil-and-paper calculations and laboratory skills, techniques, and practices. Since 
the middle of the 20th century, however, the practice of physics has increasingly 
incorporated an additional element: computation. Some physicists think of 
computation as a third fundamental approach to studying the physical world, on the 
same logical level as theory and experiment; others think of computation as an 
essential tool that both theorists and experimentalists now use in most of their work.  
Either way, computation has its own elaborate set of skills, and “a curriculum in which 
computation is absent or plays a minor role is inauthentic to the contemporary 
discipline.” [1] 

Yet, despite the presence of computational work in almost all areas of physics 
research, undergraduate physics programs still vary enormously in the extent to 
which they include instruction in computational physics. Some students finish these 
programs with a high level of computational proficiency while others may graduate 
having had few useful computational experiences. Such a lack of experience and 
proficiency can hinder physics baccalaureates seeking employment or admission to 
advanced degree programs.  One motivation for this report, therefore, is to help 
physics students develop a set of computational physics skills that helps them to 
achieve their career goals. 

Another motivation for this report is to help students further develop their ability to 
construct and disseminate physics knowledge.  The recent report of the AAPT 
Committee on Laboratories has noted that being successful in the construction and 
dissemination of new knowledge requires the dynamic and interactive employment of 
habits of mind, skills, and knowledge that might be characterized as thinking like a 
physicist [2].  Although “thinking like a physicist” may be difficult to specify, it would 
certainly include the process of modeling: conceiving, constructing, and testing 
models of the observable world.  Because modeling is now often done 
computationally as well as in the laboratory, there is a close connection between the 
skills and practices used in computation and in the laboratory. Computational results 
can lead to new predictions, models, and ways of understanding physical systems.  
Moreover, the computational cycle is iterative, much like the experimental cycle. Here, 
the computational cycle is called the “computational physics approach” to doing 
physics.  At the heart of the computational physics approach is computational physics 
thinking that builds, first, on students’ fundamental computer skills using 
computational tools and, second, on the development of their technical computing 
skills.  
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II. RATIONALE 

The rationale for integrating computational physics into the undergraduate physics 
curriculum rests on the following premises: 
 

 Physics degree programs should reflect the contemporary practice of physics 
— and computation is now ubiquitous in that practice.   

 Students gain a deeper understanding of physics and underlying mechanisms 
when they iteratively apply the fundamental laws of physics, whether in time 
to compute a system’s evolution, or in space to compute the distribution of a 
physical quantity. 

 Students using computation can develop a more exploratory approach to 
studying physical systems, which leads them to generate increasingly realistic 
models of these systems.  

 Students using computation can solve a much wider range of problems, 
including those that are insoluble analytically or impractical to probe 
experimentally.  

 Students using computation can develop critical skills and knowledge 
necessary for doing fundamental and applied research, better preparing them 
for a wide variety of careers.  As documented in reports from the Statistical 
Research Center of the American Institute of Physics, there is high demand for 
computational skills in the workplace for physics bachelor’s degree recipients 
[3].  

 
 
III. COMPUTATIONAL TOOLS 

To use the computational physics approach, students must be able to use multiple 
computational tools.  Today’s students have access to a large number of 
computational tools, and choosing among them may generate vigorous departmental 
debate. It is not the purpose of this document to endorse any particular tool, but 
instructors should be aware of the range of options and the trade-offs among them. 
We recommend that over the course of an undergraduate program, students develop 
proficiency in at least three different types of computational tools. The major types of 
computational tools are: 

 Spreadsheets. Although they are limited in power compared to other 
computational tools, spreadsheets have the advantage of displaying the 
results of all calculations so students can see exactly what is happening. Also, 
many incoming physics students are already somewhat familiar with 
spreadsheets; and spreadsheets are used in a wide range of careers. 

 Integrated mathematical computing packages (Mathematica, Maple, 
Matlab, etc.). These high-level software packages let students accomplish 
common computational tasks very quickly, sometimes with as little as a single 
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line of code, so they are often the best choice for a brief computational exercise 
in a course that doesn’t otherwise emphasize computing. 

 General-purpose programming languages (Fortran, C, Java, Python, etc.). 
These languages are the most versatile and ultimately the most powerful, and 
learning one or more of them can be a worthwhile long-term career 
investment for students.  

 Special-purpose software.  Physicists use a great variety of special-purpose 
software for particular tasks such as data acquisition, graphics, animations, 
simulations, and sharing information.  Some special-purpose software 
packages stand on their own, while others are add-ons to one of the computing 
languages or integrated packages described above. Although a special-
purpose software product can be the best choice for use in the classroom, 
instructors should consider whether it would be more empowering to teach 
students to use a more general-purpose tool. 

The lines between these categories of computational tools are not always sharp. For 
example, Matlab can be used as a general-purpose programming language, while the 
SciPy library allows Python to be used as a high-level mathematical computing tool. 

Any computational tool has an associated learning curve that requires a significant 
amount of time to traverse. Appropriate support must be provided so that the time 
students spend using the tool can be focused on learning an appropriate skill or 
physics concept. 

Deliberately omitted from this list are tools that enable parallel computing, grid 
computing, and working with “big data” and large simulations. Though such tools will 
play a role in the future careers of many of our students, the resources needed to 
incorporate them into the undergraduate curriculum are not widely available. We 
urge the physics community to be mindful of this rapidly expanding component of 
computational physics.  Schools with the resources and expertise available could use 
such tools to expand their computational curriculum beyond the recommended 
minimum. 

 
IV.  SKILLS 

To use the computational physics approach, students must develop a large number of 
skills.  We sort these skills into three categories: fundamental computer skills, 
technical computing skills, and computational physics skills. 

Students should have fundamental computer skills that include knowledge of and 
experience with operating systems; file systems and file/data organization; coding, 
using one or more computational tools; searching effectively for technical 
information; and using document and presentation preparation software. 
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It is necessary to know the fundamental computer skills that incoming students have 
so that a solid foundation can be developed through appropriate advising, support, 
and instruction. 
 
Building on their fundamental computer skills, students should develop technical 
computing skills, which include the ability to: 

 process data;  
 represent data visually;  
 prepare documents and presentations that are authentic to the discipline. 

 
Ultimately, the computational physics approach makes use of skills that are 
characteristic of what might be called computational physics thinking (the physics-
specific instance of computational thinking [4]), which is a synthesis of physics 
principles and algorithmic thinking.  Such computational physics skills include the 
ability to:  

 translate a model into code; 
 choose scales and units; 
 subdivide a model into a set of manageable computational tasks; 
 choose algorithms and computational tools; 
 debug, test, and validate code; and 
 extract physical insight. 
 

Developing technical computing skills is co-requisite for developing computational 
physics skills, and both depend on the presence of appropriate computational tools 
and the ability of the student to use these tools.  Computational tools, technical 
computing skills, and computational physics skills are therefore strongly coupled to 
one another, and it is probably more effective to learn them together, in context, 
rather than in isolation.  
 
We provide more detailed descriptions of the technical computing skills and the 
computational physics skills in the recommendations described in the following 
section. 

 
 

V. RECOMMENDATIONS FOR LEARNING OUTCOMES 

This section describes recommendations for learning outcomes in an attempt to 
define a minimum set of technical computing skills and computational physics skills 
that physics majors should develop during their undergraduate programs. The 
development of these skills does take time and should be intentionally integrated into 
the undergraduate physics curriculum and reinforced throughout the curriculum, 
rather than taught as isolated skills.  
 
The first focus area, Technical Computing Skills, describes skills that must be 
developed in order to engage productively in the production and dissemination of 
physics knowledge through the use of computers. The second focus area, 
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Computational Physics Skills, describes skills and practices that involve synthesizing 
physics with algorithmic ideas, coding/implementation, self-checking, and scientific 
argumentation. These two focus areas provide a framework for curricular and 
program development. In addition, mastering these two focus areas prepares 
students to perform computational investigations at a level appropriate for 
secondary teaching while providing a foundation of skills and practices that should 
be significantly augmented for students intending to enter industry or a graduate 
program. Additional educational research would help to refine detailed descriptions 
of the skills in these two focus areas. Such research would then enable further 
curriculum development and assessment of these skills.  

To maintain the focus on computation-related skills, it is assumed below that students 
have learned to identify the physics concepts relevant to developing a theoretical 
model, to make reasonable simplifying assumptions, and to mathematically describe 
a theoretical model (e.g., write the equations of motion).      

Finally, no attempt was made to distinguish between introductory-level or upper-
level instruction because faculty at a particular institution [5] need to collaboratively 
choose the appropriate points in their curricula for students to develop different 
skills.    

1. Technical Computing Skills 

Students should be able to: 

 Process data 
Students should be able to use computers to process data, which includes 
reducing, fitting, filtering, and/or averaging data, and computing uncertainties 
from measurements. All the computational tools described in Section III can 
be used to process data.  It is worth noting that processing data can be done 
without a specific model in mind; and so this technical skill is distinguished 
from the computational physics skill of extracting physical insight. 

 Represent data visually 
Students should be able to produce static visualizations (i.e., plots) of data 
because plots are fundamental to facilitating analysis and communication of 
data. Additionally, because different types of plots are appropriate for 
different data sets and analyses, students should be able to generate several 
types of plots. It is critically important for students to be able to graphically 
represent uncertainties on the data because the physical insights that can be 
extracted from data are constrained by uncertainty.  

 Prepare professional documents and presentations  
Students should be able to prepare professional documents and presentations. 
This skill is required to communicate results and is necessary in any 
professional field. As discussed in the Laboratory Guidelines document [2], 
students should produce these documents and presentations in forms 
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authentic to the discipline such as technical memos, journal-style articles, 
slides for professional-style oral presentations, and scientific posters. 

 

2. Computational Physics Skills 

Students should be able to: 

 Translate a model into code 
Students should be able to translate a theoretical or algorithmic model into 
code that enables computation.  This is a multifaceted skill, which includes the 
abilities to: use a computational tool to write readable, well-documented code 
with correct syntax; use language documentation and/or reference materials 
for the chosen computational tool to resolve coding questions and expand 
coding vocabulary; and apply physics knowledge of the given system to make 
discretization choices and monitor numerical errors, convergence, etc. 

 Choose scales and units 
Students should be able to choose physical scales and units appropriate to the 
system. Often the chosen scales are used to convert equations to 
dimensionless variables before coding. Such scales provide a measure against 
which one can determine the significance of different phenomena at play in a 
physical system.  

 Subdivide a model into a set of manageable computational tasks 
Students should be able to logically subdivide a computational model into a 
set of manageable computational tasks, and organize their code accordingly.  
That is, they should identify the types of computational tasks to be performed, 
the required inputs, the sequence of tasks, and the processing of outputs to 
obtain a solution.  

 Choose algorithms and computational tools 
Students should be able to choose among computational algorithms and 
computational tools to produce a solution. The ability to make such choices 
presupposes student familiarity with a variety of computational algorithms 
and tools as well as criteria for choosing among different algorithms and tools. 
For example, some mechanical systems should be simulated using a 
differential equation algorithm that conserves energy, or one that uses a 
variable time step; some many-body simulations require a dynamical 
algorithm, while others are suited to Monte Carlo techniques.   

 Debug, test, and validate code 
Students should be able to debug, test, and validate computational models. 
This process can include resolving error messages and other incorrect 
behavior; checking special cases for which answers are already known; 
adjusting the resolution of a discretization, or the limit of a sum, to estimate 
the sizes of truncation errors; comparing to experimental data or to a different 
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computational model; and simply asking whether the results are physically 
plausible. 

 

 Extract physical insight 
Students should be able to extract physical insight from a computation by 
converting the raw output of a computation into a useful form, asking 
interesting questions, and using the computation to answer these questions. 
Often this process involves repeating a computation many times using 
different sets of parameter values of particular interest, and communicating 
results effectively to others in forms authentic to the discipline.  Students 
should use their results to determine the effectiveness and/or limitations of a 
model and further refine the model (e.g., by adding missing phenomena) based 
on a comparison to experimental or theoretical results or other validated 
models.. Students should navigate the cycle from model to implementation to 
results to concepts to revised model, in order to experience the iterative 
nature of constructing physics knowledge. 
 

APPENDIX B provides several examples of these learning outcomes, organized in 
tabular form.  We also refer the reader to examples of significantly augmented 
curricula [6-8] that achieve many or all of these outcomes.  APPENDIX C describes 
several computational physics tasks that are becoming widespread in undergraduate 
physics curricula and can provide context for achieving several of the learning 
outcomes. 
 
 
VI. CURRICULAR ISSUES 

Once a department has decided upon a set of computational learning objectives, the 
faculty must decide what kinds of curricular structures are needed to help students 
meet those objectives.  The structures should ultimately be robust enough and 
sufficiently supported so that all instructors (permanent or visiting) can contribute 
effectively. 

Computation can be introduced into the undergraduate physics curriculum in any or 
all of the following ways: 

 Adding computational exercises and projects to existing physics courses that 
have traditionally emphasized pencil-and-paper calculations and/or 
laboratory measurements; 

 Designing new courses that merge traditional elements with computational 
work; 

 Offering one or more dedicated courses in computational physics; 

 Providing opportunities for computational independent study and/or 
research projects. 
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Departments should use as many of these approaches as possible and are encouraged 
to identify and use other approaches that lead to the development of students’ 
computational skills. We argue that relying entirely on dedicated computational 
physics courses and/or independent study is not sufficient because such a program 
would overly segregate computational work, making too few connections to the rest 
of the curriculum.  On the other hand, merely adding computational exercises to 
existing courses runs the risk of allocating too little time to computation, and/or, 
“hiding” it in the curriculum with too little explicit recognition. Moreover, such 
exercises, when attempted without the necessary preparation or scaffolding, can lead 
to student frustration. 

Computational work should be introduced in the introductory course. The amount of 
computation that can feasibly be done in that course will vary among institutions, but 
incorporating computational physics early allows faculty to assess and build students’ 
fundamental computer skills and experience with one or more computational tools. 
It also allows students to explore authentic, complex problems that they might not 
see until later in the curriculum. 

Many instructors who teach computational physics have found that it is best taught 
in a “lab” setting where students can work at a more flexible pace, help each other, 
and obtain help when needed from an instructor or lab assistant [9]. In addition, 
developing these skills in a communal environment helps students to function as 
members of a scientific community.  

 
VII. CHALLENGES 

Integrating computation into the undergraduate physics curriculum is not easy. Let 
us, therefore, acknowledge some of the main challenges to doing so: 

 The hidden curriculum. Many departments do not yet have explicit goals for 
most of their curricula, let alone for computational physics.  An explicit 
statement of those goals is crucial before an effective curriculum and 
associated activities can be developed. 

 Curricular time. Physics programs traditionally require a great deal of course 
work even without any computational components. Making time in the 
curriculum for computational work can therefore be a significant challenge.  
To address this challenge, department faculty should together carefully 
consider the value that computation will have for their students, and decide 
together how local resources are best managed to facilitate learning 
computational physics. 

 Time demands. It is crucial to understand where, and how, computational 
work can be added to the curriculum without imposing impossible time 
demands on the students. It is also important to be realistic about the amount 
of faculty time needed to implement computational work in the curriculum.  
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 Range of instructor backgrounds. Physics instructors, although familiar 
with computational work in their scholarly activities, may be uncomfortable 
with the types of computation that can be most naturally incorporated into 
their courses.  Workshops, conferences, and professional societies are already 
taking steps to help faculty learn more about teaching computational physics, 
as described in the Resources section below. 

 Range of student backgrounds. Some students enter a physics program with 
extensive programming experience, while others have never written a single 
line of code and may be afraid of programming a computer. Departments will 
need to know and take into account the backgrounds of the local student 
cohort when making curricular decisions. 

 Variety of computational tools. Students coming into a course may have 
already learned to use some computational tools and developed preferences 
for one over another. Instructors also have varied backgrounds and 
preferences. It is virtually impossible for a single instructor to provide 
technical support for all the tools that students might wish to use. Faculty need 
to work closely with their colleagues, both inside and outside the department, 
when choosing computational tools to use, and they should be willing to 
compromise to provide a coherent computational approach for their students. 

 Inadequate textbooks. Few of the popular textbooks used in traditional 
physics courses integrate computational work in a nontrivial way; exceptions 
are described in the Resources section below. There is a continuing need for 
new (or revised) textbooks that thoughtfully integrate more computation.   

 Shortage of educational research. Most of our knowledge of how to teach 
(or how not to teach) computational physics is anecdotal. There is a shortage 
of published research to document what works and what does not. This 
shortage means there are many ongoing opportunities for physics education 
researchers, and numerous other studies that have yet to be pursued.  Support 
for such research and its dissemination is needed. 

 Lack of community and support.  It takes a significant amount of time for a 
single faculty member to effectively include computation into an existing 
course.  To do so in isolation may make it more difficult.  Consequently, a 
community of instructors who integrate computation in their teaching is 
needed to provide support and professional development. 

 Space and scheduling constraints. Instructors who wish to teach 
computation in a lab-style setting may find that no suitable classroom is 
available, or that it is impractical to schedule a class for the longer blocks of 
time that lab work usually requires. Faculty may need to be flexible in finding 
ways to teach computational physics. 

 Hardware challenges. There is a cost to maintaining a large number of 
school-owned workstations for physics students to use in their computational 
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work. Many students prefer to use their own computers, but the variety of 
hardware and operating systems then creates troubleshooting challenges for 
instructors. 

 Software installation. Installing and configuring specialized software for 
computational physics is time-consuming and can be frustrating. 

The good news is that despite all these challenges, many physics departments have 
successfully integrated a great deal of computation into their undergraduate 
curricula. The next section provides pointers to resources that can help departments 
address many of these challenges. 

 
VIII. RESOURCES 

The following set of resources is provided as a starting point for instructors and 
departments looking to implement these computational physics recommendations in 
their courses and curricula.  It should be noted that this is neither an exhaustive nor 
an endorsed list of resources.  There are certainly other resources available, and new 
resources are being produced all the time that instructors and departments may also 
find beneficial.    

Collections of Resources 

The American Journal of Physics (AJP) Resource Letters on computational physics 
contain annotated lists of textbooks for computational physics courses and lists of 
articles that discuss ways to integrate computation into the physics curriculum. 

Paul L. DeVries, “Resource Letter CP-1: Computational Physics,” Am. J. Phys. 64 
(4), 364-8 (1996). 

Rubin H. Landau, “Resource Letter CP-2: Computational Physics,” Am. J. Phys. 76 
(4&5), 296-306 (2008). 

The second resource letter by Landau leads the April 2008 theme issue on 
computational physics (see below). The issue is an excellent entry point for those 
starting the process of integrating computation into the physics curriculum. 
 
ComPADRE, the physics and astronomy archive, already has a significant set of 
holdings of computational physics articles, conference proceedings, and curricular 
materials. Computational physics-related materials are available in various 
ComPADRE collections, including the Open Source Physics collection and collections 
focused on particular topics, such as statistical and thermal physics, and quantum 
mechanics. 

http://www.compadre.org/ 

The Partnership for Integration of Computation into Undergraduate Physics (PICUP) 
is now making computational activities, for both the introductory and upper level, 
available through ComPADRE: 

http://www.compadre.org/
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http://www.compadre.org/PICUP 

A summary of the 2007 Topical Conference on Computational Physics in the Upper-
level Curriculum is archived on ComPADRE: 
 

http://www.compadre.org/portal/items/detail.cfm?ID=11362 
 
Speakers and the schedule of the 2008 Gordon Research Conference on Computation 
and Computer-Based Instruction are archived on the Gordon Research Conference 
website. Many of the speakers contributed articles to the AJP theme issue on 
computational physics (see below). 
 

https://www.grc.org/programs.aspx?id=10156 
 
In April 2008, the American Journal of Physics published a double issue with the 
theme of computational physics. The issue contains a highly useful collection of 
articles that touch on virtually every aspect of teaching computational physics. 
 

American Journal of Physics 76 (4&5), (2008). 
 
The Next Generation Science Standards has a section on K-12 computational thinking 
skills. Mathematical and computational thinking are described in Appendix F - Science 
and Engineering Practices in the NGSS.  
 

http://www.nextgenscience.org/next-generation-science-standards 
 

Perspectives on Computational Physics in the Undergraduate Curriculum 

The following articles also provide useful information and perspectives: 

Robert G. Fuller, "Numerical Computations in US Undergraduate Physics 
Courses", Comp. Sci. Eng. 8, 16-21 (2006). 

Jeanette M. Wing, “Computational Thinking,” Comm. of the ACM 49 (3), 33-35 
(2006). 

Marty Johnston, “Implementing Curricular Change,” Comp. Sci. Eng. 4 (5), 32-37 
(2006). 

Norman Chonacky and David Winch, “Integrating computation in to the 
undergraduate curriculum: A vision and guidelines for future developments”, 
Am. J. Phys. 76 (4&5), 327-333 (2008). 

Knut Mørken et al., “Computing in Science and Engineering: A guide for 
universities and colleges in Norway”, report to the Norwegian Ministry of 
Education and Research, June 15, 2011. 

Ruxandra M. Serbanescu, Paul J. Kushner, and Sabine Stanley, “Putting 

http://www.compadre.org/PICUP
http://www.compadre.org/portal/items/detail.cfm?ID=11362
https://www.grc.org/programs.aspx?id=10156
http://scitation.aip.org/content/aapt/journal/ajp
http://www.nextgenscience.org/next-generation-science-standards
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computation on a par with experiment and theory in the undergraduate 
curriculum,” Am. J. Phys. 79 (9), 919-924 (2011). 

Marcos D. Caballero and Steven J. Pollock, “A model for incorporating computation 
without changing the course: An example from middle-division classical 
mechanics,” Am. J. Phys. 82 (3), 231-237 (2014). 

 

 

Curricular Materials 

Examples of mature introductory textbooks that integrate computation are  
 

Matter and Interactions, 4th edition (Wiley, 2015), by Ruth W. Chabay and Bruce 
A. Sherwood.  

Six Ideas that Shaped Physics, 3rd edition (McGraw-Hill, 2017), by Thomas A. Moore.  
 
 
Examples of upper-level textbooks or supplements to upper-level textbooks that 
integrate computation are  
 

Physlet Quantum Physics: An Interactive Introduction, 2nd edition, at 
http://www.compadre.org/pqp/, by Mario Belloni, Wolfgang Christian, and Anne 
J. Cox.  

Statistical and Thermal Physics: With Computer Applications, 6.1.2010 edition 
(Princeton, 2010), by Harvey Gould and Jan Tobochnik. 

Computation and Problem Solving in Undergraduate Physics (Lawrence University 
Press, Appleton, WI 2013), by David M. Cook. 
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APPENDIX A: The AAPT Statement on Computational Physics and its Rationale 
 
The AAPT Statement on Computational Physics, which was approved in 2011, is as 
follows: 
 

The American Association of Physics Teachers urges that every physics 
and astronomy department provide its majors and potential majors 
with appropriate instruction in computational physics. 

 
Rationale: 
 
Contemporary research in physics and related sciences almost always involves the 
use of computers. They are used for data collection and analysis, numerical analysis, 
simulations, and symbolic manipulation. Computational physics has become a third 
way of doing physics and complements traditional modes of theoretical and 
experimental physics. In addition, almost all undergraduate students who take 
physics courses will use computational tools in their future careers even if they do 
not become practicing physicists. 
  
One of the traits that distinguishes physics from other sciences is the ability to 
develop new tools as needed to do our work. These new tools include new 
experimental techniques, mathematical methods, theoretical formalisms, and now 
new computer algorithms. Thus, we should include in the physics undergraduate 
curriculum some level of instruction in computer algorithms appropriate for solving 
problems in physics. 
  
Insight into understanding physics can be gained in many ways. Experiments 
emphasize that our models are connected to the real world, and frequently surprise 
us with new phenomena we didn't expect. Theory provides the tools for organizing 
our knowledge, making predictions, and describing nature in a concise and 
compelling manner. The computer provides a new tool that enhances both theory and 
experiment. Computer simulations allow us to develop models that are not solvable 
analytically, to test theories where traditional experiments are too difficult or 
expensive, to ask “what-if” questions, and to visualize the time development of 
dynamical systems. As a result simulations provide different insights, which may not 
be possible to obtain through the use of traditional theoretical and experimental 
methods. 
  



AAPT UCTF Computational Physics Report   September 16, 2016  14 

APPENDIX B: Recommendations for Learning Outcomes: Examples 
 
The recommendations for student learning outcomes given in this document are for 
a minimum set of technical computing skills and computational physics skills that 
physics majors should develop during their undergraduate major. These 
recommendations are intentionally general enough that they are universally 
accessible. The way in which these recommendations are implemented will vary from 
institution to institution, depending, for example, on the local student population and 
the resources available. Departments that have the expertise and/or resources to go 
above and beyond these recommendations are strongly encouraged to do so in order 
to help their majors develop additional knowledge and skills.  
 
Each of these learning outcomes should be addressed at some point during the full 
span of the undergraduate physics curriculum. Similar to the experimental and 
theoretical physics curricula, the computational physics curriculum should be a spiral 
curriculum such that students develop and reinforce their skills through scaffolded, 
multiple experiences, beginning in the introductory courses and continuing in upper-
level courses. Specific examples for the two focus areas are provided in the tables 
below. It is important to note that these few examples are intended only to aid 
departments in implementing computational physics into their curriculum. Not all of 
these examples need to be included in the physics curriculum; in fact, there probably 
is not time to include them all in a physics curriculum. Also, these examples are 
certainly not the only ways these learning outcomes could be demonstrated; 
departments are encouraged to develop, and share, their own examples.  
 

1. Technical Computing Skills 

Students should be able to: 

Process Data.  Example: Use and/or code a least-squares fitting of data 
to a functional form, and plot the data with uncertainties 
together with the fit function, e.g., fitting the profile of a 
laser beam, or a far-field diffraction pattern. 

Example: Compute a data set for graphical comparison to 
appropriately reduced experimental data, including 
uncertainties.  

Example: Compute the average of several data sets to 
reduce the effects of run-to-run variations and compare to 
theoretical models. 

Example: Given a controlled series of spectra with 
occasional noise spikes, filter out the spikes and integrate 
peak areas to plot the signal as a function of the control 
variable.  
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1. Technical Computing Skills 

Students should be able to: 

Represent Data 
Visually. 

Example: Produce two-dimensional plots of one or more 
sets of data with error bars in both dimensions, e.g., from 
video analysis of everyday sports projectiles. 

Example: Produce a contour plot of the period of a 
physical pendulum as a function of its center of mass 
position and the characteristic size of the pendulum. 

Example: Produce a histogram of detection events as a 
function of event characteristic, such as particle energy or 
time-of-flight, for different detector characteristics such as 
position. 

Example: Produce phase space plots, a bifurcation 
diagram, and a Poincaré section for a chaotic oscillator. 

Prepare professional 
documents and 
presentations 

Example: Write a technical memo that incorporates the 
graphical representation of data. 

Example: Prepare a professional manuscript that satisfies 
all journal submission guidelines, especially with regard 
to figures. 

Example: Prepare an oral or poster presentation that 
satisfies the guidelines of a professional organization. 

Example: Demonstrate awareness of audience needs 
during the production of visual and written 
representations of outputs.  Actively consider different 
visual designs to make graphic representations more 
effective. 
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2. Computational Physics Skills 

Students should be able to: 

Translate a model into 
code.  

Example: Write code to set up arrays of values, perform 
calculations in a sequence and/or under specified 
conditions, and generate numerical or graphical output. 

Example: Use reference materials to adapt code examples 
to perform a particular task, such as calculating the sum of 
values in a particular array (e.g., summing forces exerted 
by an array of charged particles). 

Choose scales and units. Example: For a spherical balloon (projectile) falling in air, 
relevant scales could include the length scale set by the 
balloon’s diameter, and the time scale set by the amount 
of time for the balloon to free fall its diameter. 

Subdivide a model into 
a set of manageable 
computational tasks. 

Example: Calculating the motion of a charged particle in a 
region with a specified distribution of charges involves 
calculating the net force by applying the principle of 
superposition (summing), numerically integrating the 
equations of motion, and storing and/or plotting the 
trajectory.  To simulate a beam of such particles, an 
additional task is to organize the storage of the many 
particles that constitute the beam. 

Choose algorithms. Example: When numerically integrating equations of 
motion, choose among algorithms such as the Euler-
Cromer method, fourth-order Runge-Kutta with constant 
step size, or with a variable step size set by an error 
criterion.  Consider trade-offs between complexity and 
execution speed when choosing an algorithm.  
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2. Computational Physics Skills 

Students should be able to: 

Debug, test, and 
validate code. Example: Use the debugging tool in an integrated 

development environment (IDE) to rapidly find and 
resolve bugs.  Isolate portions of a code to determine 
where a particular bug occurs. 

Example: Check that a code to solve for the motion of a 
falling object in air reproduces the analytical free fall 
result when the drag force is set to zero. 

Example: Check that a code to solve for the evolution of a 
harmonic oscillator reproduces the analytical solution.   

Example:  Check that a code to calculate the electric field 
due to a symmetric distribution of charges converges to 
the analytical solution as the discretized distribution 
becomes more fine-grained.  

Example: Probe a model to compute charged particle 
trajectories to test whether or for what values the model 
breaks down for relativistic particles. 

Example: Check that a code to process a data set performs 
as intended by comparing outputs to expected outputs for 
test data.    

Example: Check that a code to solve the time-independent 
Schrödinger equation by the shooting method reproduces 
the analytical solution for the finite square well. 

Example: Check that a code to model an ideal gas 
reproduces the Maxwell-Boltzmann distribution for the 
given conditions. 
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2. Computational Physics Skills 

Students should be able to: 

Extract physical insight. Example: Make a contour plot of the period of a physical 
pendulum versus adjustable geometric parameters (i.e., 
the center of mass position, the size of the pendulum) to 
determine the sensitivity of the period to these 
parameters. 

Example: Compute the motion of an object falling through 
air, using different models for air drag, and compare to 
experimental data. 

Example: Compute the electric field due to a nontrivial 
charge distribution and determine its sensitivity to 
perturbations in the distribution.   

Example: Compute the evolution of quantum-mechanical 
two-level system and study its dependence on the nature 
and strength of the coupling between the levels.   

Example: Compute the normal modes of an acoustic 
object and the frequency spectrum generated by a 
impulsive hit; compare to the corresponding experimental 
frequency spectrum, obtained by applying a fast Fourier 
transform to a recorded sound. 

Example: Use the visual representation of the output as 
evidence in developing clearly stated scientific arguments. 
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APPENDIX C: Example Computational Physics Tasks 
 
Listed below are a number of computational physics tasks that are becoming 
reasonably widespread in undergraduate course work. We do not recommend that 
every undergraduate program try to incorporate all (or even most) of these examples, 
and we know that instructors are continually developing exercises that are more 
innovative than these. For those who may be new to the teaching of computational 
physics, we hope this list can serve as a starting point. 

 Use a simple second-order algorithm to integrate Newton’s second law, to 
predict the behavior of a mechanical system such as a projectile, a pendulum, 
or celestial bodies. 

 Simulate and explore the behavior of a chaotic system such as a damped, 
driven pendulum or the Lorenz model. 

 Simulate the dynamics of a many-body system such as a Lennard-Jones fluid, 
to explore phase behavior and irreversible processes. 

 Calculate electric and magnetic fields of nontrivial charge and current 
distributions, using the principle of superposition. 

 Solve Laplace’s equation by the relaxation method, to obtain the electrostatic 
potential near a conductor with a nontrivial shape. 

 Numerically integrate probability distributions (e.g., Maxwell-Boltzmann 
distribution, Planck spectrum, or a Gaussian wave packet) to obtain 
probabilities of measured values being in specific ranges. 

 Solve the time-independent Schrödinger equation in one dimension by the 
shooting method, to obtain energy levels and stationary-state wave functions. 

 Use a matrix eigen-system library routine to find the normal modes of a system 
of coupled oscillators, or to solve the time-independent Schrödinger equation. 

 Use combinatoric functions to calculate the entropy and heat capacity of a 
collection of two-level systems or quantum harmonic oscillators. 

 Use pseudo-random numbers to simulate radioactive decay, diffusion, or some 
other random process. 

 Use the Metropolis algorithm to simulate a simple fluid, or the Ising model of 
a ferromagnet, held at constant temperature. 

 Simulate the time evolution of a continuous system, according to the wave 
equation or the time-dependent Schrödinger equation. 

 Analyze signals or wave shapes using a fast-Fourier-transform library routine. 

 
 



 

AAPT UCTF Computational Physics Report   September 16, 2016  20 

References 
 
[1] Wolfgang Christian and Bradley Ambrose, “An Introduction to the Theme 
Double-Issue”, Am. J. Phys. 76 (4&5), 293-294 (2008). 
 
[2] AAPT Recommendations for the Undergraduate Physics Laboratory Curriculum, 
available at http://www.aapt.org/Resources/. Nancy Beverly; Duane Deardorff; 
Richard Dietz; Melissa Eblen-Zayas; Robert Hobbs; Dean Hudek; Joseph Kozminski; 
Heather Lewandowski; Steve Lindaas; Ann Reagan; Randy Tagg; Jeremiah Williams; 
and Benjamin Zwickl.  
 
[3] Patrick Mulvey and Starr Nicholson, “Physics Bachelor’s Initial Employment”, 
focus on report, American Institute of Physics, June 2015.  
 
[4] Jeanette M. Wing, “Computational Thinking”, Comm. of the ACM 49 (3), 33-35 
(2006). 
 
[5] In some cases, there may be a very strong link between, say, a two-year college 
and a four-year college or university via the transfer of students. These students 
would benefit from inter-institutional faculty collaboration on computational 
physics instruction. 
 
[6] Marty Johnston, “Implementing Curricular Change”, Comp. Sci. Eng. 4 (5), 32-37 
(2006). 
 
[7] David M. Cook, “Computation in undergraduate physics: The Lawrence 
Approach”, Am. J. Phys. 76 (4&5), 321-326 (2008). 
 
[8] David H. McIntyre, Janet Tate, and Corinne Manogue, “Integrating computational 
activities into the upper-level Paradigms in Physics curriculum at Oregon State 
University”, Am. J. Phys. 76 (4&5), 340-346 (2008). 
 
[9] Ross L. Spencer, “Teaching computational physics as a laboratory sequence”, Am. 
J. Phys. 73 (2), 151-153 (2005). 
 
 

http://www.aapt.org/Resources/


 

AAPT UCTF Computational Physics Report   September 16, 2016  21 

ABOUT THIS DOCUMENT 
This document was developed through several versions by a subset of members of 
the AAPT Undergraduate Curriculum Task Force (UCTF): Ernie Behringer (Eastern 
Michigan University), Juan Burciaga (Bowdoin College), Dick Dietz (University of 
Northern Colorado), Andy Gavrin (Indiana University-Purdue University at 
Indianapolis), Joseph Kozminski (Lewis University), and Victor Migenes (Brigham 
Young University).   

Daniel Schroeder (Weber State University) provided an alternative version that 
fundamentally influenced and strongly contributed to the final version.  The UCTF is 
very grateful for his extensive and thoughtful input.    

The task force thanks the following people for the input to various early versions of 
this document: Mario Belloni (Davidson College), Michael Falk (Johns Hopkins 
University), Joe Heafner (Catawba Valley Community College), Brian O’Shea 
(Michigan State University), Jan Tobochnik (Kalamazoo College), and PICUP members 
Marcos “Danny” Caballero (Michigan State University), Norman Chonacky (Yale 
University), Larry Engelhardt (Francis Marion University), and Kelly Roos (Bradley 
University) for providing valuable feedback. The task force also thanks Elizabeth 
George and colleagues at Wittenberg University, and Marie Lopez del Puerto and 
colleagues at the University of St. Thomas for their helpful input. 

  



 

AAPT UCTF Computational Physics Report   September 16, 2016  22 

ABOUT THE AAPT Undergraduate Curriculum Task Force 

The Undergraduate Curriculum Task Force (UCTF) of the American Association of 
Physics Teachers (AAPT) was established in 2013, with the following charge: 

The AAPT Undergraduate Curriculum Task Force (UCTF) is charged with developing 
specific, multiple recommendations for coherent and relevant undergraduate 
curricula (including course work, undergraduate research, mentoring, etc.) for 
different types of physics majors in collaboration with the APS and AIP, and with 
developing recommendations for the implementation and assessment of such 
curricula. 

At the time of its establishment in 2013, the UCTF consisted of the following members, 
many of whom were drawn from several different AAPT Area Committees at that 
time: 

 Name Institution/Organization 
1 Trish Allen Appalachian State University 
2 Ernie Behringer Eastern Michigan University (Chair) 
3 Juan Burciaga Mt. Holyoke College 
4 Beth Cunningham* AAPT (Executive Officer) 
5 Dwain Desbien Estrella Mountain College 
6 Dick Dietz University of Northern Colorado 
7 Jerry Feldman George Washington University 
8 Noah Finkelstein University of Colorado, Boulder 
9 Andy Gavrin Indiana University-Purdue University, Indianapolis 

10 Dennis Gilbert Lane Community College 
11 Tim Grove Indiana-Purdue University at Fort Wayne 
12 Bob Hilborn* AAPT (Associate Executive Officer) 
13 Ted Hodapp APS (Director of Education & Diversity) 
14 Seth Guinals Kupperman NYC HS for Math, Science & Engineering  
15 Joseph Kozminski Lewis University 
16 Ntungwa Maasha College of Coastal Georgia 
17 Corinne Manogue Oregon State University 
18 Victor Migenes Brigham Young University, Provo 
19 Tom Olsen** American Institute of Physics 
19 Steve Shropshire* Idaho State U 
20 Rob Steiner American Museum of Natural History 
21 Aaron Titus* High Point U 
 

* Ex oficio. 

** AIP Representative 

 


